We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




African Folk Drug Modulates Critical Potassium Channel Protein

By LabMedica International staff writers
Posted on 29 Nov 2018
Print article
Image: Two components of Mallotus leaf extract bind to a previously unrecognized binding site on KCNQ1, a potassium channel essential for controlling electrical activity in many human organs. The image shows a computer model illustrating the novel herbal component, CPT1, an isovaleric acid molecule (green), occupying a novel binding site (R243, red) to activate KCNQ1 (Photo courtesy of Dr. Geoffrey Abbott, University of California, Irvine School of Medicine).
Image: Two components of Mallotus leaf extract bind to a previously unrecognized binding site on KCNQ1, a potassium channel essential for controlling electrical activity in many human organs. The image shows a computer model illustrating the novel herbal component, CPT1, an isovaleric acid molecule (green), occupying a novel binding site (R243, red) to activate KCNQ1 (Photo courtesy of Dr. Geoffrey Abbott, University of California, Irvine School of Medicine).
A leaf extract used for hundreds of years in African folk medicine was shown to act by influencing the behavior of a protein that forms a critical potassium channel found in many human organs.

While, a leaf extract from the shrub Mallotus oppositifolius, has been used as an herbal medicine across Africa for centuries to treat a variety of illnesses and disorders including diabetes, pain, headaches, paralysis, and epilepsy; the molecular mechanism for its action has not been well established.

The ubiquity and importance of the protein KCNQ1 (potassium voltage-gated channel subfamily Q member 1) make it a strong candidate for explaining the underlying mechanistic basis of the therapeutic effects of Mallotus. Therefore, investigators at the University of California, Irvine (USA) screened leaf extract components for KCNQ1 activity.

They reported in the November 14, 2018, online edition of the journal Science Advances that they had identified two components of the Mallotus leaf extract that bound to a previously unrecognized binding site on KCNQ1. The two components, mallotoxin (MTX) and 3-ethyl-2-hydroxy-2-cyclopenten-1-one (CPT1), activated KCNQ1 channels by an unexpected, novel mechanism - binding to a novel drug site at the foot of the voltage sensor. MTX and CPT1 activated KCNQ1 by hydrogen bonding to the foot of the voltage sensor, a previously unidentified drug site, which was also found to be essential for MTX activation of the related KCNQ2/3 channel.

"Genetic disruption of KCNQ1 causes lethal cardiac arrhythmias and is also associated with gastric cancer, type II diabetes, and thyroid and pituitary gland dysfunction. KCNQ2/3 disruption causes epilepsy and severe developmental delay. Therefore, new strategies are needed to therapeutically activate these potassium channels and overcome the effects of genetic disruption. The discovery of novel botanicals that might help in KCNQ drug development strategies highlights the importance of protecting plant species that can produce novel therapeutics. Factors including habitat loss, over-collecting, and climate change are threatening this invaluable resource," said senior author Dr. Geoffrey Abbott, professor of physiology and biophysics at the University of California, Irvine.

Related Links:
University of California Irvine

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chemistry Analyzer
MS100
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.