We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Hormone Treatment Linked to Development of Aggressive Cancer

By LabMedica International staff writers
Posted on 06 Dec 2018
Print article
Image: Graph shows elevated activity of a transcription-factor network that includes the molecule onecut2 in tumors of patients whose prostate cancer resisted hormone therapy (above purple bar) compared with other types (Photo courtesy of the Nature Publishing Group).
Image: Graph shows elevated activity of a transcription-factor network that includes the molecule onecut2 in tumors of patients whose prostate cancer resisted hormone therapy (above purple bar) compared with other types (Photo courtesy of the Nature Publishing Group).
A team of cancer researchers has identified a gene that promotes the growth and spread of the most aggressive type of prostate cancer.

While many forms of prostate cancer require little or no treatment, the aggressive type that spreads to other parts of the body and resists hormone therapy is usually fatal with only a third of such patients living for five years after diagnosis.

Previous studies have shown that treatment of prostate cancer (PC) by androgen suppression promoted the emergence of aggressive variants that were androgen receptor (AR) independent. In a paper published in the November 26, 2018, online edition of the journal Nature Medicine, investigators at Cedars-Sinai Medical Center (Los Angeles, CA, USA) identified the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC).

The ONECUT2 (one cut homeobox 2) gene encodes a member of the onecut family of transcription factors, which are characterized by a cut domain and an atypical homeodomain. The OC2 protein binds to specific DNA sequences and stimulates expression of target genes, including genes involved in melanocyte and hepatocyte differentiation.

In the current study, OC2 was found to act as a survival factor in mCRPC models, suppressing the AR transcriptional program by direct regulation of AR target genes. It also activated genes associated with neural differentiation and progression to lethal disease. Furthermore, OC2 was active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors.

Following up, the investigators identified the compound CSRM617, which counteracted the action of onecut2. They showed that CSRM617 significantly reduced the size of prostate cancer metastases in mice.

"We need fresh strategies to prevent prostate cancer from turning deadly for the thousands of men whose disease metastasizes and withstands hormone therapy," said senior author Dr. Michael Freeman, professor of surgery and biomedical sciences at Cedars-Sinai Medical Center. "Our research suggested that onecut2 is a master regulator of lethal prostate cancer that may be a useful therapeutic target in up to a third of patients whose cancer spreads and evades hormone therapy."

Related Links:
Cedars-Sinai Medical Center

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.