We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Stem Cell and CRISPR Technologies Combine to Study Mutant Tau Genes

By LabMedica International staff writers
Posted on 25 Dec 2018
Print article
Image: The photomicrograph shows neurons (red) with a mutation in the MAPT gene - a gene that makes the protein tau. People with this mutation develop frontotemporal dementia. Researchers found that cells carrying the MAPT mutation developed abnormalities in genes that control communication between the brain cells (Photo courtesy of Sidhartha Mahali, Washington University School of Medicine).
Image: The photomicrograph shows neurons (red) with a mutation in the MAPT gene - a gene that makes the protein tau. People with this mutation develop frontotemporal dementia. Researchers found that cells carrying the MAPT mutation developed abnormalities in genes that control communication between the brain cells (Photo courtesy of Sidhartha Mahali, Washington University School of Medicine).
A mutant form of the gene coding for tau protein contributes to the development of frontotemporal dementia by reducing the expression of GABA (gamma-aminobutyric acid) receptor genes in the brain.

Frontotemporal dementia, which accounts for about 20% of all cases of early-onset dementia, tends to afflict people with memory loss from the age of 40 to the early 60s. Previous studies have shown that mutations in the microtubule-associated protein tau (MAPT) gene cause autosomal dominant frontotemporal lobar degeneration with tau inclusions (FTLD-tau). Individuals carrying the MAPT p.R406W mutation present clinically with progressive memory loss and neuropathologically with neuronal and glial tauopathy. However, the pathogenic events triggered by the expression of the mutant tau protein remain poorly understood.

To determine how mutant tau protein causes memory loss, investigators at Washington University School of Medicine (St, Louis, MO, USA) used a combination of stem cell technology and CRISPR/cas9 gene editing.

The investigators prepared neurons with the MAPT mutation that had been derived from induced pluripotent stem cells (iPSCs) generated from skin cells obtained from FTLD-tau patients. CRISPR/Cas9 gene editing was used to eliminate the mutation in some neurons but not in others (isogeneic controls).

The investigators reported in the December 13, 2018, online edition of the journal Translational Psychiatry that the expression of the MAPT p.R406W mutation was sufficient to create a significantly different transcriptomic profile compared with that of the isogeneic controls and to cause the differential expression of 328 genes. Sixty-one of these genes were also differentially expressed in the same direction between MAPT p.R406W carriers and pathology-free human control brains.

Genes differentially expressed in the stem cell models and human brains were enriched for pathways involving gamma-aminobutyric acid (GABA) receptors and pre-synaptic function. The expression of GABA receptor genes, including GABRB2 and GABRG2, were consistently reduced in iPSC-derived neurons and brains from MAPT p.R406W carriers. In addition, GABA receptor genes, including GABRB2 and GABRG2, are significantly lower in symptomatic mouse models of tauopathy. Genome wide association analyses reveal that common variants within GABRB2 were associated with increased risk for frontotemporal dementia.

The investigators suggested that by demonstrating that MAPT p.R406W was sufficient to induce changes in GABA-mediated signaling and synaptic function, which may contribute to the pathogenesis of FTLD-tau and other primary tauopathies, they had confirmed a systems biology approach, which leveraged molecular data from stem cells, animal models, and human brain tissue to reveal novel disease mechanisms.

"We have demonstrated that we can capture changes in human cells cultured in a dish that also are appearing in the brains of individuals suffering with frontotemporal dementia," said senior author Dr. Celeste M. Karch, assistant professor of psychiatry at Washington University School of Medicine. "Importantly, the approach we are using allows us to zero in on genes and pathways that are altered in cells and in patient brains that may be influenced by compounds already approved by the FDA. We want to evaluate whether any of these compounds could prevent memory loss, or even restore memory, in people with frontotemporal dementia by improving the function of these pathways that have been disrupted."

Related Links:
Washington University School of Medicine

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.