We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




RNA Sequencing Offers Greater Capacity for Recovery and Analysis of Molecules

By LabMedica International staff writers
Posted on 01 Jan 2019
Print article
Image: The Nadia automated single cell Drop-seq RNA sequencing system (Photo courtesy of Dolomite Bio).
Image: The Nadia automated single cell Drop-seq RNA sequencing system (Photo courtesy of Dolomite Bio).
A recent paper described a significant modification that enables Drop-seq single-cell RNA sequencing technology to recover and analyze a more diverse variety of molecules.

Drop-seq methodology involves encapsulating single cells with single barcoded beads in nanoliter-sized droplets. The barcoded oligo bead library is constructed such that each bead has a unique DNA barcode sequence, but within a bead, the thousands of copies of oligo all contain an identical barcode sequence. The 3′ end of the oligo has a poly(dT) stretch that captures messenger RNA (mRNA) and primes reverse transcription. Once encapsulated, the cell is broken open and the mRNA is captured on the bead, resulting in single-cell transcriptomes attached to microparticles. The RNA is converted to DNA, amplified and sequenced. The major drawback to the technique is that it can only identify molecules of mRNA, which limits the potential scope of analyses.

Investigators at Cornell University (Ithaca, NY, USA) described in the December 17, 2018, online edition of the journal Nature Methods a modification to Drop-seq. Their DART-seq (droplet-assisted RNA targeting by single-cell sequencing) method was depicted as being a versatile technology that enabled multiplexed amplicon sequencing and transcriptome profiling in single cells. The modification was accomplished by enzymatically customizing the beads prior to performing conventional Drop-seq analysis, which allowed for the recovery and analysis of a greater variety of molecules.

The investigators applied DART-seq to simultaneously characterize the non-A-tailed transcripts of a segmented dsRNA virus and the transcriptome of the infected cell. In addition, they used DART-seq to simultaneously determine the natively paired, variable region heavy and light chain amplicons and the transcriptome of B-lymphocytes.

"Those technologies are very popular because they have lowered the cost of these types of analyses and sort of democratized them, made them very cheap and easy to do for many labs," said senior author Dr. Iwijin De Vlaminck, assistant professor in of biomedical engineering at Cornell University.

Related Links:
Cornell University

Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.