We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Inhibition of RNA-Editing Enzyme Sensitizes Tumors to Immunotherapy

By LabMedica International staff writers
Posted on 14 Jan 2019
Print article
Image: The structure of the ADAR protein (Photo courtesy of Wikimedia Commons).
Image: The structure of the ADAR protein (Photo courtesy of Wikimedia Commons).
An international team of cancer researchers has reported that by blocking the function of the RNA-editing enzyme ADAR1 (Adenosine Deaminase Acting on RNA1) in tumor cells, they could profoundly sensitize tumors to immunotherapy and overcome resistance to checkpoint blockade therapy.

Checkpoint inhibitor therapy is a form of cancer treatment immunotherapy, which targets immune checkpoints, key regulators of the immune system that stimulate or inhibit its actions. Tumors can use these checkpoints to protect themselves from attacks by the immune system. Checkpoint therapy can block inhibitory checkpoints, restoring immune system function. However, most cancer patients either do not respond to immune checkpoint blockade or develop resistance to it, often because of acquired mutations that impair antigen presentation.

Investigators at Bar-Ilan University (Ramat Gan, Israel), Harvard Medical School (Boston, MA, USA), and their collaborators reported in the December 17, 2018, online edition of the journal Nature that in the absence of ADAR1, A-to-I editing of interferon-inducible RNA species was reduced.

Adenosine-to-inosine (A-to-I) modifications contribute to nearly 90% of all editing events in RNA. The deamination of adenosine is catalyzed by the double-stranded RNA-specific adenosine deaminase (ADAR), which typically acts on pre-mRNAs. The deamination of adenosine to inosine disrupts and destabilizes the dsRNA base pairing, therefore rendering that particular dsRNA less able to produce siRNA, which interferes with the RNAi pathway.

The investigators found that loss of ADAR1 overcame resistance to the PD-1 (Programmed cell death protein 1) checkpoint blockade caused by inactivation of antigen presentation by tumor cells, which resulted in growth inhibition and tumor inflammation.

"We found that if the mechanism is blocked, the immune system is much more sensitive. When the mechanism is deactivated, the immune system becomes much more aggressive against the tumor cells," said contributing author Dr. Erez Levanon, associate professor of life sciences at Bar-Ilan University.

Related Links:
Bar-Ilan University
Harvard Medical School

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.