We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Preventing Accumulation of Senescent Cells Reverses Adverse Signs of Aging

By LabMedica International staff writers
Posted on 15 Jan 2019
Print article
Image: Drug treatment eliminates senescent cells from tissues of old mice. The blue staining shows senescent cells in lung and liver tissue. The amount of the staining is significantly reduced following the drug treatment (Photo courtesy of The Weizmann Institute of Science).
Image: Drug treatment eliminates senescent cells from tissues of old mice. The blue staining shows senescent cells in lung and liver tissue. The amount of the staining is significantly reduced following the drug treatment (Photo courtesy of The Weizmann Institute of Science).
Researchers working with mouse models have shown that some of the less desirable signs of aging, such as chronic inflammation and reduced function of some organs, could be reversed by treatment to reduce the number of senescent cells that have accumulated in the animal.

Senescent cells are aged or damaged cells that accumulate in tissues in advanced age. They no longer are able to perform their normal roles and interfere with the functioning of the tissue in which they accumulate. Elimination of senescent cells is considered to be a promising therapeutic approach.

The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. To evaluate the role of the immune system in the aging process, investigators at the Weizmann Institute of Science (Rehovot, Israel) worked with Prf1−/− mice with impaired cell cytotoxicity, which suffered from chronic inflammation, and with progeroid (progeroid means "resembling premature aging") mice with impaired cell cytotoxicity that promoted senescent-cell accumulation and shortened lifespan.

The investigators reported in the December 21, 2018, online edition of the journal Nature Communications that Prf1−/− mice with impaired cell cytotoxicity exhibited both higher senescent cell tissue burden and chronic inflammation. They suffered from multiple age-related disorders and lower survival. The accumulation of senescent cells in these Prf1−/− mice was accompanied by a progressive state of chronic inflammation, followed by increased tissue fibrosis and other types of tissue damage, as well as compromised organ functionality. The poor health of old Prf1−/− mice was associated with fitness reduction, weight loss, kyphosis (abnormally excessive convex curvature of the spine), older appearance, and shorter lifespan than that of wild type controls.

The investigators reported that elimination of senescent cells from old Prf1−/− mice could be achieved by pharmacological inhibitors of the BCL-2 family of proteins, such as ABT-737. First developed for potential cancer chemotherapy, ABT-737 was subsequently identified as a senolytic (a drug that selectively induces cell death in senescent cells). This pharmacological approach attenuated age-related phenotypes and gene expression profile in Prf1−/− mice. Furthermore, implementation of this approach on Prf1−/− progeroid mice increased median lifespan of these animals.

These findings shed new light on mechanisms governing senescent-cell presence in aging, and could motivate new strategies for regenerative medicine.

Related Links:
Weizmann Institute of Science

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.