We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocking Colorectal Cancer Growth by Inhibiting Glycosphingolipid Synthesis

By LabMedica International staff writers
Posted on 21 Jan 2019
Print article
Image: Treatment with the drug D-PDMP reduced beta-1,4-GalT-V protein levels in human colorectal cancer cells and killed cancer cells (Photo courtesy of Dr. Subroto B. Chatterjee, Johns Hopkins University).
Image: Treatment with the drug D-PDMP reduced beta-1,4-GalT-V protein levels in human colorectal cancer cells and killed cancer cells (Photo courtesy of Dr. Subroto B. Chatterjee, Johns Hopkins University).
Results of a recent study suggested that inhibition of glycosphingolipid (GSL) synthesis could be a novel approach for the treatment of colorectal cancer.

For several years, investigators at Johns Hopkins University (Baltimore, MD, USA) have been studying the role in human colorectal cancer of the oncogenic signal transducer enzyme, beta-1,4-galactosyltransferase-V (beta-1,4-GalT-V). This enzyme catalyzes the synthesis of lactosylceramide, a fat that can produce superoxides, which lead to an increase in new cells and blood vessels that cancers can exploit to spread.

The investigators reported in a paper published in the January 8, 2019, issue of the journal Biochemical and Biophysical Research Communications that beta-1,4-GalT-V gene/protein expression was specifically increased in human colorectal cancer tumors, compared to visibly normal tissue. In addition there was a marked increase in its enzymatic activity, and its product lactosylceramide. Furthermore, there were increased dihydrosphingolipid metabolites, in particular dihydrosphingomyelin in cancer tissue compared to normal.

These findings were obtained by analyzing 24 colorectal cancer tissue samples. The investigators evaluated the samples' response to antibodies against beta-1,4GalT-V and found strong reactivity. An ELISA (enzyme-linked immunosorbent assay) test to detect and measure antibodies in 21 of these samples indicated an approximately 6.5-fold increase of beta-1,4GalT-V in colorectal cancer tissues compared with visibly normal areas within the same samples. There was a 2.25-fold increase in lactosylceramide synthase activity in colorectal cancer samples compared with normal colon cells.

Inhibition of glycosphingolipid synthesis by the synthetic ceramide analog, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), concurrently inhibited colorectal cancer cell (HCT-116) proliferation, as well as beta-1,4-GalT-V mass and several glycosphingolipid levels. These findings strengthen the hypothesis that inhibition of GSL synthesis could be a novel approach for the treatment of this life-threatening disease.

"We know that beta-1,4GalT-V is highly and specifically enriched on the endothelial cells in the lining of blood vessels, in cancer tissue," said first author Dr. Subroto B. Chatterjee, professor of pediatrics at Johns Hopkins University. "If you treat these cells with a drug that targets beta-1,4GalT-V, it will go and attack the endothelial cells that have this protein, and hopefully it will neutralize their activity. This provides evidence that beta-1,4GalT-V is a target for cell proliferation, and that we can block the cycle of cell proliferation by using this D-PDMP compound, at least in cell-based testing. It shows the potential for the application of this compound in perhaps multiple types of cancers."

Related Links:
Johns Hopkins University

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Strips
11 Parameter Urine Strips
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.