We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Specialized Nuclear Bodies Delay and Promote Repair of DNA Damage

By LabMedica International staff writers
Posted on 14 Mar 2019
Print article
Image: Specialized proteins protect damaged DNA in the cell nucleus (pink shapes) until the damage can be repaired (Photo courtesy of the University of Copenhagen).
Image: Specialized proteins protect damaged DNA in the cell nucleus (pink shapes) until the damage can be repaired (Photo courtesy of the University of Copenhagen).
A molecular mechanism that helps minimize the impact of natural DNA errors, which occur during the process of cell division and replication, was identified and characterized in cultures of human cells.

Failure to complete DNA replication is a by-product of genome doubling in almost every cell cycle. During mitosis, under-replicated DNA (UR-DNA) is converted into DNA lesions, which are inherited by daughter cells and sequestered in 53BP1 nuclear bodies (53BP1-NBs).

The fate of DNA with unresolved replication intermediates is not known. Previous studies showed that mild replication stress increased the frequency of chromosomal lesions that were transmitted to daughter cells. Throughout G1, these lesions were sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. The number of such 53BP1 nuclear bodies increased after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies were partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. In addition, 53BP1 nuclear bodies protected chromosomal fragile sites sequestered in these compartments against erosion.

In the current study, which was published in the February 25, 2019, online edition of the journal Nature Cell Biology, investigators at the University of Copenhagen (Denmark) showed that the formation of 53BP1-NBs interrupted the chain of repetitive damage intrinsically embedded in UR-DNA. This result was obtained by labeling 53BP1-NBs in living human cells using fluorescent dyes and then following them under a microscope over several successive generations. Using this method, the investigators traced the fate of inherited DNA damage directly from the time of generation in mother cells to their final destiny in daughter cells.

The investigators found that unlike clastogen-induced 53BP1 foci that were repaired throughout interphase, 53BP1-NBs restrained replication of the embedded genomic loci until late S phase, thus enabling the dedicated RAD52-mediated repair of UR-DNA lesions. A clastogen is a mutagenic agent giving rise to or inducing disruption or breakages of chromosomes, leading to sections of the chromosome being deleted, added, or rearranged. RAD52 is a protein that plays a central role in genetic recombination and DNA repair by promoting the annealing of complementary single-stranded DNA and by stimulation of the RAD51 recombinase.

The absence or malfunction of 53BP1-NBs caused premature replication of the affected loci, accompanied by genotoxic RAD51-mediated recombination (a genotoxic agent is a chemical or another agent that damages cellular DNA, resulting in mutations or cancer). Thus, by adjusting replication timing and repair pathway choice at under-replicated loci, 53BP1-NBs enabled the completion of genome duplication of inherited UR-DNA and prevented the conversion of under-replications into genome instability.

"53BP1 nuclear bodies delay cell division in daughter cells in order to reach the only remaining time in their lifecycle when they can mend DNA lesions that their mother caused but could not fix. This second chance is vital because it is also the last one. We have predicted and then experimentally documented that a failure of this second chance converts the initially curable DNA damage to one that can no longer be fixed. Accumulation of such mishaps could lead to disease, including cancer", said senior author Dr. Kai John Neelsen, assistant professor of protein research at the University of Copenhagen.

Related Links:
University of Copenhagen

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.