We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Specialized Nuclear Bodies Delay and Promote Repair of DNA Damage

By LabMedica International staff writers
Posted on 14 Mar 2019
Print article
Image: Specialized proteins protect damaged DNA in the cell nucleus (pink shapes) until the damage can be repaired (Photo courtesy of the University of Copenhagen).
Image: Specialized proteins protect damaged DNA in the cell nucleus (pink shapes) until the damage can be repaired (Photo courtesy of the University of Copenhagen).
A molecular mechanism that helps minimize the impact of natural DNA errors, which occur during the process of cell division and replication, was identified and characterized in cultures of human cells.

Failure to complete DNA replication is a by-product of genome doubling in almost every cell cycle. During mitosis, under-replicated DNA (UR-DNA) is converted into DNA lesions, which are inherited by daughter cells and sequestered in 53BP1 nuclear bodies (53BP1-NBs).

The fate of DNA with unresolved replication intermediates is not known. Previous studies showed that mild replication stress increased the frequency of chromosomal lesions that were transmitted to daughter cells. Throughout G1, these lesions were sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. The number of such 53BP1 nuclear bodies increased after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies were partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. In addition, 53BP1 nuclear bodies protected chromosomal fragile sites sequestered in these compartments against erosion.

In the current study, which was published in the February 25, 2019, online edition of the journal Nature Cell Biology, investigators at the University of Copenhagen (Denmark) showed that the formation of 53BP1-NBs interrupted the chain of repetitive damage intrinsically embedded in UR-DNA. This result was obtained by labeling 53BP1-NBs in living human cells using fluorescent dyes and then following them under a microscope over several successive generations. Using this method, the investigators traced the fate of inherited DNA damage directly from the time of generation in mother cells to their final destiny in daughter cells.

The investigators found that unlike clastogen-induced 53BP1 foci that were repaired throughout interphase, 53BP1-NBs restrained replication of the embedded genomic loci until late S phase, thus enabling the dedicated RAD52-mediated repair of UR-DNA lesions. A clastogen is a mutagenic agent giving rise to or inducing disruption or breakages of chromosomes, leading to sections of the chromosome being deleted, added, or rearranged. RAD52 is a protein that plays a central role in genetic recombination and DNA repair by promoting the annealing of complementary single-stranded DNA and by stimulation of the RAD51 recombinase.

The absence or malfunction of 53BP1-NBs caused premature replication of the affected loci, accompanied by genotoxic RAD51-mediated recombination (a genotoxic agent is a chemical or another agent that damages cellular DNA, resulting in mutations or cancer). Thus, by adjusting replication timing and repair pathway choice at under-replicated loci, 53BP1-NBs enabled the completion of genome duplication of inherited UR-DNA and prevented the conversion of under-replications into genome instability.

"53BP1 nuclear bodies delay cell division in daughter cells in order to reach the only remaining time in their lifecycle when they can mend DNA lesions that their mother caused but could not fix. This second chance is vital because it is also the last one. We have predicted and then experimentally documented that a failure of this second chance converts the initially curable DNA damage to one that can no longer be fixed. Accumulation of such mishaps could lead to disease, including cancer", said senior author Dr. Kai John Neelsen, assistant professor of protein research at the University of Copenhagen.

Related Links:
University of Copenhagen

New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Toxoplasma Rapid Test
Toxo IgG/IgM Rapid Test Kit
New
PROM Test
AMNIOQUICK DUO

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.