We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cardiac Researchers Use Stem Cells to Generate Functional Heart Muscle

By LabMedica International staff writers
Posted on 03 May 2016
Print article
Stem cell researchers have developed a new technique to form micro-scale arrays of engineered heart muscle (EHM) from fewer than 10,000 starter cells without requirement for adherence features or extracellular matrix (ECM).

Tissue engineering approaches have the potential to increase the physiologic relevance of cells, such as cardiomyocytes, derived from human induced pluripotent stem cells (iPSCs). However, forming engineered heart muscle (EHM) typically requires more than one million cells per tissue. Existing miniaturization strategies involve complex approaches not suitable for mass production, limiting the ability to use EHM for iPSC-based disease modeling and drug screening. Microscale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements.

Investigators at the Gladstone Institute (San Francisco, CA, USA) recently described a new approach for preparing EHM that dramatically reduced the number of cells needed, making it an easier, cheaper, and more efficient system.

Initially, the investigators generated heart muscle cells and connective tissue cells from iPSCs. They then cultured combinations of these cells in a special vessel that resembled a tiny dog bone. This unique shape encouraged the cells to self-organize into elongated muscle fibers. Within a few days, the micro tissues resembled heart muscle both structurally and functionally.

The EHM prepared by this method exhibited uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness compared to monolayers with the same cellular composition.

“The beauty of this technique is that it is very easy and robust, but it still allows you to create three-dimensional miniature tissues that function like normal tissues,” said senior author Dr. Bruce Conklin, senior investigator of cardiovascular disease at the Gladstone Institute. “Our research shows that you can create these complex tissues with a simple template that exploits the inherent properties of these cells to self-organize. We think that the micro heart muscle will provide a superior resource for conducting research and developing therapies for heart disease.”

Related Links:
Gladstone Institute

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Hematology Analyzer
Swelab Lumi
New
Chikungunya Rapid Test
Chikungunya IgG/IgM Rapid Test Kit
New
Hematology Analyzer
BH-6180

Print article

Channels

Molecular Diagnostics

view channel
Image: The BIOTIA-ID urine NGS assay is a urine infectious disease test powered by genomics and AI (Photo courtesy of Shutterstock)

Genomics and AI-Powered Urine Infectious Disease Test Addresses Critical Need for Complicated UTIs

Urinary tract infections (UTIs) are the most prevalent outpatient infection, affecting over 7 million patients annually, with women being disproportionately impacted. UTIs can severely affect the quality... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The QuickMIC system (Photo courtesy of Gradientech)

Ultra-Rapid AST System Provides Critical Results for Sepsis Patients

Sepsis is a critical condition and one of the leading causes of death in hospitals. Millions of adults are diagnosed with sepsis each year, and it is also a primary reason for hospital readmissions.... Read more

Pathology

view channel
Image: Ataraxis Breast has shown 30% higher accuracy in predicting cancer recurrence than the standard of care molecular diagnostic assay (Photo courtesy of 123RF)

World’s First AI-Native Cancer Diagnostic to Transform Precision Medicine

Molecular diagnostic tests have long been regarded as the standard for selecting personalized treatments, especially in oncology. However, these tests require physical tissue samples and are often limited... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.