We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

By LabMedica International staff writers
Posted on 26 Apr 2023
Print article
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to the development of an eco-friendly disposable sensor that can measure glucose levels and other biomarkers in saliva.

Researchers at National and Kapodistrian University of Athens (NKUA, Athens, Greece) have created this easy-to-produce device, which they believe could eventually help doctors diagnose various conditions. Wood is an attractive option for electronics and sensor design due to its renewable, biodegradable, and low-cost nature. However, its poor electrical conductivity poses challenges. One solution is to use wood as a passive substrate and coat it with metal and carbon-based inks. Another approach involves using high-power lasers to char specific regions of the wood, turning them into conductive graphite.

However, this complex technique requires advanced, costly instrumentation, an oxygen-free environment, and fire retardants. To create a more affordable and straightforward process, the researchers employed low-power diode lasers. These lasers have successfully been used to make polyimide-based sensors but have not previously been applied to wooden electronics and electrochemical sensors. The team utilized a portable, low-cost laser engraver to generate a pattern of conductive graphite electrodes on a wooden tongue depressor without the need for special conditions. These electrodes formed two electrochemical cells separated by lines drawn with a water-repellent permanent marker.

The biosensor was then used to quickly and simultaneously measure nitrite and glucose concentrations in artificial saliva. Nitrite can indicate oral diseases like periodontitis, while glucose can serve as a diagnostic for diabetes. The researchers suggest that these low-cost devices could be adapted to detect other saliva biomarkers and could be easily and rapidly produced on-site at medical facilities.

Related Links:
NKUA 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Procalcitonin Rapid Test
StrongStep Procalcitonin Test
New
Malaria Rapid Test
ASSURE Malaria P.f/P.v Rapid Test

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: Lunit SCOPE HER2 is an AI-powered solution designed to detect HER2 expression profile (Photo courtesy of Lunit)

AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.