We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Distinct Blood Signatures Found in COVID-19 Patients Could Significantly Improve Testing

By LabMedica International staff writers
Posted on 13 Jan 2021
Print article
Illustration
Illustration
Researchers have discovered distinct blood signatures present in patients with COVID-19 that could significantly improve testing and long-term monitoring of the disease.

The research team at the Australian National Phenome Centre (ANPC) at Murdoch University (Perth, Australia) applied advanced analytical chemistry methods to study the plasma of patients suffering from COVID-19 infection and found diagnostic markers that were not present in respiratory patients that tested negative for the virus. Specifically, the research found that plasma lipoproteins – structures that transport fats around the body – in the blood of COVID-19 patients had changed dramatically during infection. They became closer to patterns typically found in patients with diabetes, atherosclerosis and cardiovascular disease.

The study involved the analysis of blood plasma samples collected from patients who presented COVID-19 disease symptoms and subsequently tested positive; healthy adults who had not exhibited COVID-19 disease symptoms; and patients with COVID-19 disease symptoms who tested negative. The samples were analyzed using state-of-the-art metabolic phenotyping technologies, which can reveal the molecular structures and quantitative bioanalysis for almost any type of biological liquid or solid. The analysis provided the unique biological ‘fingerprints’ of each sample, on which the research findings were based. The researchers believe that their work underlines the importance of long-term follow up studies on “recovered” COVID-19 patients, particularly those experiencing persistent effects, to assess their health status and take steps to mitigate any long-term effects of COVID-19 exposure.

“This work opens the door to a new type of test that does not depend on detection of the virus itself but that can help discriminate COVID-19 infections, especially when used in conjunction with conventional PCR testing,” explained Professor Jeremy Nicholson, Director of the ANPC and leader of the research. “This would increase the overall security of existing testing procedures, such as those used in quarantine situations, which may be key to future easing of State and National lock-down protocols especially with the advent of the new UK B.1.1.7 corona virus variant which is significantly more infectious and affects children more easily.”

Related Links:
Murdoch University

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Hepatitis B Virus Test
HBs Ab – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.