We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gut Segments Reunite in Model Culture System

By LabMedica International staff writers
Posted on 07 Sep 2015
Print article
Image: Embryonic bowel explants were cultured for three days in basal media alone or this media supplemented with R-Spondin 1. Note that, in the latter condition, there was exuberant growth of tissue from the ends of explants. Bars are 250 microns long (Photo courtesy of the University of Manchester).
Image: Embryonic bowel explants were cultured for three days in basal media alone or this media supplemented with R-Spondin 1. Note that, in the latter condition, there was exuberant growth of tissue from the ends of explants. Bars are 250 microns long (Photo courtesy of the University of Manchester).
An organ culture model system was created to evaluate physical manipulations aimed at enhancing the healing of gut segments in order to generate a single functional organ.

Investigators at the University of Manchester (United Kingdom) worked with embryonic mouse jejunum, which was isolated and cut into tubes two to three millimeters in length. The paired segments separated by a small gap (about one millimeter) were placed in growth medium on semi-permeable supports. Each pair of segments was linked by a nylon suture threaded through their lumens.

Results published in the August 3, 2015, online edition of the Journal of Tissue Engineering and Regenerative Medicine revealed that after three days in organ culture fed by defined serum-free media, the rudiments differentiated to form tubes of smooth muscle surrounding a core of rudimentary villi. Of 34 such pairs, 74% had touching and well aligned proximate ends. Of these joined structures, 80% (59% of the total pairs) had a continuous lumen, as assessed by observing the trajectories of fluorescent dextrans injected into their distal ends. Fused organ pairs formed a single functional unit, as assessed by spontaneous contraction waves propagated along their lengths.

In some experiments the investigators added a growth factor called R-spondin 1 to the medium in an attempt to accelerate growth and make it more successful. Although this caused faster growth, it failed to establish the bridge in as uniform a way and fusion was less successful.

Senior author Dr. Adrian Woolf, professor of pediatric science at the University of Manchester, said, "The ability to study organs outside of the body is delivering new insights into how they work. In this case we have been able to study damaged intestines and instigate repairs which could lead to treatment in a number of conditions. In this study we managed to bridge a gap of less than one millimeter, but for this to be useful in conditions like short bowel syndrome we will need to promote growth across much larger distances. Having the ability to test different vitamins and hormones which promote growth opens up many new possibilities for future treatments."

Related Links:

University of Manchester


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Centrifuge
Hematocrit Centrifuge 7511M4

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.