We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-Clotting Agent Diagnoses and Monitors Childhood Genetic Diseases

By LabMedica International staff writers
Posted on 24 Feb 2011
Print article
A protein involved in blood clotting can be used to diagnose and subsequently monitor the treatment of a group of childhood genetic diseases.

Scientists demonstrated that the clotting agent, heparin cofactor II/Thrombin (HCII/T) complex, could be used as a "biomarker," or biological tell, in individuals with mucopolysaccharide (MPS) diseases.

MPS diseases are severe metabolic conditions caused by a genetic defect that affects the body's ability to break down complex sugars in cells and the bloodstream. The conditions result in a range of symptoms from abnormal skeletal development to mental decline and even premature death depending on the type of sugars built up in the body.

A recent advance whereby the missing or faulty enzyme that breaks down the sugars is replaced artificially in affected individuals has made the need for an accurate diagnostic tool for these diseases more pressing.

Dr. Brian Bigger, from Manchester's MPS Stem Cell Research Laboratory (United Kingdom) said, "HCII/T complex was originally developed in Canada as a test for patients with MPSI, II and VI. We were able to show that HCII/T complex can clearly distinguish between untreated patients with MPSI, MPSII, MPSIIIA, MPSIIIB, MPSIIIC, MPSVI, and unaffected individuals."

"We also went on to monitor long-term clinical outcomes in patients with MPSI, MPSII, and MPSVI after treatment to show that elevations of both this biomarker, and the dermatan sulphate: chondroitin sulphate biomarker currently used in the diagnostic laboratory in Manchester, correlated with clinical treatment outcomes in patients. "…By measuring the ratio of DS:CS in urine we can accurately diagnose the disease, but detection of sugars is expensive and technically challenging. Instead, the HCIIT method relies on detection of proteins binding to sugars and is much cheaper to perform."

The original article about this study was published in December 2010 online in the Journal of Inherited Metabolic Disease, the official Journal of the Society for the Study of Inborn Errors of Metabolism.

Related Links:

Manchester's MPS Stem Cell Research Laboratory




Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
cTnI/CK-MB/Myo Test
Finecare cTnI/CK-MB/Myo Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.