We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetic Testing Unravels Bleeding Disorders

By LabMedica International staff writers
Posted on 07 Mar 2011
Print article
A molecular approach is able to identify genes involved in life threatening bleeding disorders.

The rare platelet type of von Willebrand disease (PT-VWD) has similar diagnostic features to another form of the disease, 2B-VBD, and must be differentiated. A correct diagnosis can only be made by closely examining certain areas of both genes to determine where the defect lies.

An international team of scientists working in conjunction with the Queen's University, (Kingston, ON, Canada), analyzed a total of 110 samples/data from eight countries over a three year period. A molecular approach was utilized, analyzing exon 28 of the von Willebrand factor (VWF) gene, and in mutation negative cases the platelet glycoprotein Ib, alpha polypeptide (GP1BA) gene.

The investigators found that that 48 cases initially diagnosed as putative type 2B/PT-VWD carried exon 28 mutations consistent with type 2B VWD, 17 carried GP1BA mutations consistent with a PT-VWD diagnosis, three had other VWD types (2A and 2M) and five expressed three previously unpublished exon 28 mutations. In this study, the percentage of type 2B VWD diagnosis is 44%, while the percentage of misdiagnosis of PT-VWD is 15%.

The study highlights the diagnostic limitations due to unavailability or poor application of radioimmunoprecipitation assays and related tests in some centers and proposes genetic analysis as a suitable tool for the discrimination of the two disorders worldwide. Accordingly, cases that are negative for both VWF and GP1BA gene mutations require further evaluation for alternative diagnoses.

Maha Othman, MD, PhD, a professor at Queen's University, said, "Correct diagnosis is critical because it determines the treatment decision." Despite its relative rarity, VWD is actually the most common genetically inherited bleeding disorder, affecting about 1% of the general population. The study was published online in February 2011 in Thrombosis and Haemostasis.

Related Links:
Queen's University


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.