We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Human Autoinflammatory Disease Identified

By LabMedica International staff writers
Posted on 24 Dec 2019
Print article
Image: Innate immune cells: heterozygous mutations of the RIPK1 caspase-8 cleavage site cause the autoinflammatory disease CRIA syndrome (Photo courtesy of Walter and Eliza Hall Institute)
Image: Innate immune cells: heterozygous mutations of the RIPK1 caspase-8 cleavage site cause the autoinflammatory disease CRIA syndrome (Photo courtesy of Walter and Eliza Hall Institute)
Autoinflammatory diseases are caused by abnormal activation of the innate immune system, leading to recurrent episodes of fever and inflammation that can damage vital organs.

Scientists from Australia and the USA have discovered and identified the genetic cause of a previously unknown human autoinflammatory disease. They have determined that the autoinflammatory disease, which they termed cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome, is caused by a mutation in a critical cell death component called RIPK1.

Scientists from the Walter and Eliza Hall Institute (Parkville, Australia) and the National Institutes of Health (Bethesda, MD, USA) have described patients from three families with a history of episodic high fevers and painful swollen lymph nodes. The patients, who were diagnosed with a new autoinflammatory disease (CRIA syndrome), had a host of other inflammatory symptoms which began in childhood and continued into their adult years.

The teams sequenced the entire exome of each patient and discovered unique mutations in the exact same amino acid of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in each of the three families. RIPL1is a serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage.

To define the mechanism for this disease, the scientists generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1−/− mice died post-natally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner.

Najoua Lalaoui, PhD, the first author of the study, said, “Cell death pathways have developed a series of inbuilt mechanisms that regulate inflammatory signals and cell death, because the alternative is so potentially hazardous. However in this disease, the mutation in RIPK1 is overcoming all the normal checks and balances that exist, resulting in uncontrolled cell death and inflammation.”

The authors concluded that their results demonstrated the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life. The study was published on December 11, 2019 in the journal Nature.

Related Links:
Walter and Eliza Hall Institute
National Institutes of Health


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.