We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




T Cells Function as A Team to Fight Infection

By LabMedica International staff writers
Posted on 26 Feb 2020
Print article
Image: This photomicrograph depicts T cells interacting with each other. Cell surfaces are labeled in red, cell nuclei in blue, and receptors mediating communication in green (Photograph courtesy of Immunity).
Image: This photomicrograph depicts T cells interacting with each other. Cell surfaces are labeled in red, cell nuclei in blue, and receptors mediating communication in green (Photograph courtesy of Immunity).
When faced with an infection, T cells normally follow a remarkably reproducible response pattern of expansion, contraction, and memory formation. Population-intrinsic and -extrinsic regulation of T cells occur, but are not mutually exclusive.

Conventional T cell response is often measured by extrinsic signals, such as those sent by regulatory T cells or dendritic cells, which can be variable and thus difficult to use to infer population size. Alternatively, if a population of T cells mutually controls each other, then the strength of regulatory signals scales with population size in an intrinsic manner.

An international team of scientists collaborating with Albert-Ludwigs University (Freiburg im Breisgau, Germany) used time-lapse microscopy, genetic perturbation, bioinformatic predictions, and mathematical modeling to investigate if CD8+ T cells use quorum regulation to control their population dynamics. The scientists found that activated T cells mutually promote their expansions when they are present at low densities, but they also limit further proliferation once sufficient numbers have been reached. This mechanism leads to efficient amplification of initial immune reactions and also prevents potentially dangerous immunopathologies.

Specifically, CD28 and interleukin-2 (IL-2) induced CD80 expression by activated T cells, which could in turn bind to CD28 to augment IL-2 production. This positive feedback loop perpetuated T-cell expansion. However, at some point it becomes necessary to limit this amplification. This is accomplished through a negative feedback circuit acting via cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), by blocking ligand binding of CD28 and IL-2. This evidence supports a mechanistic explanation of how T-cell population dynamics are regulated in a cell density manner by receiving signals from a variety of cell types.

The team found that Intercellular Adhesion Molecule 1 (ICAM-1)-mediated cell clustering enabled CD8 + T cells to collectively regulate the balance between proliferation and apoptosis. Mechanistically, T cell expressed CD80 and CD86 interacted with the receptors CD28 and CTLA-4 on neighboring T cells; these interactions fed two nested antagonistic feedback circuits that regulated IL-2 production in a manner dependent on T cell density as confirmed by in vivo modulation of this network. Accordingly, CD8 + T cell-population-intrinsic mechanisms regulate cellular behavior, thereby promoting robustness of population dynamics.

Jan Rohr, MD, the senior author of the study, said, “We showed that these immune cells perceive and regulate each other. The immune cells act as a team and not as autonomously acting individualists. This principle of density control of immune cells is simple and very effective. This makes it reliable and at the same time hopefully accessible for therapeutic approaches.” The study was published on February 11, 2020 in the journal Immunity.

Related Links:
Albert-Ludwigs University

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
High Performance Centrifuge
CO336/336R
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.