We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




RNA Sequencing as Alternative to Immunohistochemistry in Cancer Diagnostics

By LabMedica International staff writers
Posted on 06 Jul 2020
Print article
Image: The Bioanalyzer RNA 6000 Nano assay provides reliable and reproducible characterization of total RNA and mRNA from multiple sample types (Photo courtesy of Agilent Technologies).
Image: The Bioanalyzer RNA 6000 Nano assay provides reliable and reproducible characterization of total RNA and mRNA from multiple sample types (Photo courtesy of Agilent Technologies).
The conventionally used method for cancer diagnostics relies on immunohistochemical dyeing of tumor tissue sections. It allows detecting the presence and measuring the concentration of marker proteins characterizing malignant growths. The resulting microscope images indicate whether the tumor is malignant and what its molecular type is. This information is crucial for selecting the right therapy.

Another alternative method is RNA sequencing which involves determining the sequence and the number of molecules for each RNA present in the cell. The resulting data, referred to as the transcriptome, reflects the activity of all genes in the cell. To analyze such vast arrays of data, bioinformaticians employ specialized algorithms and compile transcriptome databases for different human cells and tissues.

Scientists at the Moscow Institute of Physics and Technology (MIPT, Moscow, Russia) and their associates examined biosamples of tumor tissues that were formalin-fixed and embedded into paraffin blocks (FFPE). Tissue samples were obtained from 39 breast cancers (BC) and 19 lung cancer (LC). The team performed the first correlation study of RNA sequencing and immunohistochemistry-measured expression profiles for the clinically actionable biomarker genes in FFPE cancer tissue samples.

RNA was extracted from FFPE sections using a QIAGEN RNeasy FFPE Kit (Hilden, Germany). The RNA 6000 Nano (Agilent Technologies, San Clara, CA, USA) or Qubit RNA Assay kits (Thermo Fisher Scientific, Waltham, MA, USA) were used to measure RNA concentration. RNA Integrity Number (RIN) was measured using Agilent 2100 Bioanalyzer. Immunohistochemistry assay for BC samples for HER2, ESR1, and PGR proteins was performed using antibody kits (Roche Diagnostics, Indianapolis, IN, USA) to identify the respective statuses of the tumors. For HER2, the output statuses were confirmed using the Roche Diagnostic’s ISH DNA Probe Cocktail assay.

The team reported that they had demonstrated high and statistically significant correlations between the RNA sequencing (Oncobox protocol, OmicsWay Corp, Walnut, CA, USA) and immunohistochemical measurements for HER2/ERBB2, ER/ESR1 and PGR genes in BC, and for PDL1 gene in LC; AUC: 0.963 for HER2, 0.921 for ESR1, 0.912 for PGR, and 0.922 for PDL1.

Anton A. Buzdin, PhD, who heads the Laboratory for Translational Genomic Bioinformatics, said, “We have shown for the first time that the findings of both methods are in perfect agreement for the selected set of biomarkers. It's just that immunohistochemistry requires a much greater number of attempts, one for every biomarker considered, meaning that much more biomaterial is needed. In turn, RNA sequencing enables us to quantitatively characterize the work of all protein-encoding genes, and there are about 20,000 of them.” The study was originally published on May 9, 2020 in the journal Biomedicines.




Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.