We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Encephalitis After Immunotherapy Detected Early by Blood Test

By LabMedica International staff writers
Posted on 16 Sep 2021
Print article
Image: The BD FACSLyric Flow Cytometry System (Photo courtesy of BD Diagnostics)
Image: The BD FACSLyric Flow Cytometry System (Photo courtesy of BD Diagnostics)
Immunotherapy is very effective for many cancers, but the treatment can also cause autoimmune side effects. Encephalitis is one of the most serious and difficult-to-diagnose side effects of immunotherapy.

Immunotherapy with checkpoint inhibitors has enabled completely new opportunities for oncologists to treat patients with various forms of cancer. The treatment means that the patient’s own immune response attacks the cancer cells. The drugs activate the immune response by blocking signaling pathways that normally act as inhibitors of the patient’s T cells.

Oncologists at the Sahlgrenska University Hospital (Goteborg, Sweden) and their rheumatology and clinical neurochemistry colleagues used a simple blood test to detect treatment-triggered encephalitis at an early stage. The scientists took blood samples from an encephalitis patient with metastases of melanoma in the brain, adrenal glands, lung, subcutis, and lymph nodes started double immune checkpoint blockade treatment and also analyzed T cell characteristics in nine checkpoint inhibitor-treated patients with or 12 without other serious immune-related adverse events (irAE).

Peripheral blood mononuclear cells (PBMCs) were separated from heparinized whole blood, stained with fluorochrome-conjugated antibodies and analyzed in a FACSLyric flow cytometer (Beckman Coulter, Brea, CA, USA). CD4 and CD8 T-cell subsets were defined by gating with FlowJo software. The S-100B concentrations in cerebrospinal fluid (CSF) and serum were measured by immunoassay on the cobas Elecsys platform (Roche Diagnostics, Rotkreuz, Switzerland). CSF concentrations of neurofilament light polypeptide (NFL) and glial fibrillary acidic protein (GFAP) were measured with in-house enzyme-linked immunosorbent assays.

CSF tau concentration was measured with a Lumipulse immunoassay (Fujirebio Diagnostics Inc., Tokyo, Japan). Plasma concentrations of NFL, GFAP, and tau were measured with ultrasensitive single-molecule array technology and commercially available kits. CSF and serum concentrations of albumin and IgG were measured by nephelometry on the cobas Elecsys platform. Oligoclonal IgG bands in serum and CSF were visualized by isoelectric focusing in a polyacrylamide gel and silver staining.

The investigators reported that axonal damage marker neurofilament light polypeptide (NFL) and astrocytic damage marker glial fibrillar acidic protein (GFAP) were very high in blood and CSF and gradually normalized after immunosuppression and intensive care. The levels of S-100B in blood rose even before the encephalitis patient exhibited symptoms. The co-stimulatory receptor inducible T cell co-stimulatory receptor (ICOS) was expressed on a high proportion of CD4+ and CD8T cells as encephalomyelitis symptoms peaked and then gradually decreased in parallel with clinical improvement.

Max Levin, MD, PhD, an Associate Professor and Chief Oncologist and co-author of the study said, “In Gothenburg, we now use S-100B and NFL to monitor the risk of encephalitis and we hope to soon be able to include GFAP and Tau. The markers have helped us diagnose three more cases of treatment-triggered encephalitis.”

The authors concluded that their results suggest a potential role for ICOS on CD4+ and CD8+ T cells in mediating encephalomyelitis and other serious irAE. In addition, brain damaged markers in the blood could facilitate early diagnosis of encephalitis. The study was originally published online on July 2, 2021 in the Journal for ImmunoTherapy of Cancer.

Related Links:
Sahlgrenska University Hospital
Beckman Coulter
Roche Diagnostics
Fujirebio Diagnostics


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.