We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microarrays Uncover Connection Between Genomic Errors and Neurologic Disorders

By Labmedica staff writers
Posted on 04 Feb 2008
Print article
Microarrays are providing the design capabilities, sensitivity, and resolution, which enable scientists to discover a mechanism of genomic errors associated with certain diseases.

Genomic copy number changes or translocations occurring during cell division are associated with a wide range of diseases especially developmental and neurologic disorders such as Alzheimer's, Parkinson's, and Potocki-Lupski Syndrome. When the DNA addition or deletion occurs in the wrong place, another genomic-based disorder such as Pelizaeus-Merzbacher disease (PMD) can occur. PMD is a progressive degenerative disorder of the central nervous system in which motor abilities and intellectual function deteriorate. This X-chromosome-linked neurodevelopment disorder affects males and can have particularly devastating consequences.

Scientists at Baylor College of Medicine (BCM; Houston, TX, USA), used their own SurePrint in situ synthesis platform together with Agilent (Santa Clara, CA, USA) microarrays to observe the unique way that DNA additions or deletions introduced in genes during cell division were associated the diseases. The mechanism for human genomic disorders in which segments of DNA are added or deleted during replication is called replication Fork Stalling and Template Switching (FoSTes).

Jennifer Lee, Ph.D., a member of the Baylor team, was studying PMD and found genomic changes that previous theory about DNA recombination did not explain. In some places, extra genetic material was found in the middle of a different duplication.

"The Agilent microarrays were essential in enabling us to elucidate this novel mechanism,” said BCM's James R. Lupski, M.D., Ph.D., professor of molecular and human genetics, and senior investigator in this project. Prof. Lupski pioneered the emerging field of copy number variation (CNV) in the early 1990s in the quest to understand genetic variation and the multiple molecular mechanisms for disease. Now, he and his colleagues have discovered that the DNA replication process can stall, and sometimes, switch to a different "template” rather than restarting in the same place. In addition to disease research, according to Dr. Lupski, the FoSTeS mechanism could also play an important role in studies investigating human evolution.

The findings were published in the January 2007 issue of the journal Cell.


Related Links:
Baylor College of Medicine
Agilent
Gold Member
Rickettsia Conorii Assay
RICKETTSIA CONORII ELISA
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Anti-Rubella IgG (Rubella IgG) Test
Rubella IgG AccuBind ELISA
New
Cooling Table Centrifuge
MPW-352R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate Arc System has been granted US FDA 510(k) clearance (Photo courtesy of Accelerate Diagnostics)

Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR

Delayed administration of antibiotics to patients with bloodstream infections significantly increases the risk of morbidity and mortality. For optimal therapeutic outcomes, it is crucial to rapidly identify... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.