We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Breath-Based Sampling System Diagnoses Lower Respiratory Tract Infection

By LabMedica International staff writers
Posted on 26 Sep 2024
Print article
Image: BreathBiomics is a novel mechanism to capture biomolecules in human breath (Photo courtesy of ZeteoTech)
Image: BreathBiomics is a novel mechanism to capture biomolecules in human breath (Photo courtesy of ZeteoTech)

Lower Respiratory Tract Infections (LRTIs) are the leading cause of death from infectious diseases. Current diagnostic methods rely heavily on clinical symptoms but often lack specificity, particularly given the prevalence of bacterial colonization without active infection. The use of human breath for noninvasive disease detection has long been recognized as a promising diagnostic tool, but the absence of effective biomolecular sampling technologies has limited progress. To overcome this challenge, a new sampling system has been developed to efficiently capture biomolecules from human breath. This system targets protease dysregulation, a known indicator of bacterial infections, by capturing proteases and enabling their activity-based detection, thus aiding in the diagnosis of LRTIs.

ZeteoTech’s (Sykesville, MD, USA) BreathBiomics sampling system introduces an innovative capture mechanism that utilizes advanced surface chemistry to collect non-volatile organic compounds from exhaled breath. The system features chemically modified functional groups designed to have a high affinity for a broad spectrum of biomolecules, including lipids, metabolites, and proteins, allowing for a comprehensive analysis of respiratory health. By leveraging molecular interactions, the system effectively captures biomolecules contained in submicron particles, addressing a significant limitation of existing collection technologies. Additionally, the functional groups can be customized to target specific biomarkers, such as those associated with SARS-CoV-2, offering enhanced flexibility for biomarker detection and diagnosis.

The BreathBiomics sampling system is highly adaptable, integrating seamlessly into various respiratory devices such as facial masks, mouthpieces, mechanical ventilators, oxygen masks, incubators, and tracheostomy tubes. Its quiet operation, generating noise levels below 45 dB (similar to a home refrigerator), makes it ideal for use in clinical environments, including primary care settings, emergency rooms, operating rooms, and intensive care units. Whether used for clinical research or routine care, BreathBiomics has the potential to revolutionize the way clinicians detect and manage respiratory diseases.

Related Links:
ZeteoTech

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Hematology Analyzer
BH-6180
New
Lysing Machine
FastPrep-24 5G

Print article

Channels

Molecular Diagnostics

view channel

Nanopore-Based Tool Detects Disease with Single Molecule

Detecting diseases typically requires identifying millions of molecules. The molecules targeted for detection—such as specific DNA or protein molecules—are extremely small, about one-billionth of a meter in size. As a result, the electrical signals they generate are tiny and require specialized equipment for accurate detection.... Read more

Microbiology

view channel
Image: The QuickMIC system (Photo courtesy of Gradientech)

Ultra-Rapid AST System Provides Critical Results for Sepsis Patients

Sepsis is a critical condition and one of the leading causes of death in hospitals. Millions of adults are diagnosed with sepsis each year, and it is also a primary reason for hospital readmissions.... Read more

Pathology

view channel
Image: Ataraxis Breast has shown 30% higher accuracy in predicting cancer recurrence than the standard of care molecular diagnostic assay (Photo courtesy of 123RF)

World’s First AI-Native Cancer Diagnostic to Transform Precision Medicine

Molecular diagnostic tests have long been regarded as the standard for selecting personalized treatments, especially in oncology. However, these tests require physical tissue samples and are often limited... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.