We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Targeted Fluorescent-Imaging Compound Detects Viable Cancer Cells

By LabMedica International staff writers
Posted on 19 Jan 2009
Print article
A fluorescent-imaging compound is turned on only when it is inside a living cell and stops fluorescing when the cell dies or becomes damaged. The compound can be engineered to target specific types of cancer cells.

The new compound enabled scientists to visualize viable breast cancer cells that have spread to the lungs in mice. The compound binds to a protein called HER2, which is found on the surface of some breast cancer cells, and it glows, or fluoresces, only when taken into living cells. This method of targeting and activation allowed the scientists to detect specific types of live cancer cells in a mouse model of breast cancer.

Previously developed fluorescent compounds that are activated inside the body's cells have the limitation that once turned on they continue to fluoresce even after they diffuse to new locations. This makes it very difficult to distinguish viable tumor cells from normal tissue, dead, or damaged tumor cells.

The investigation took place at the National Cancer Institute (NCI), part of the US National Institutes of Health (Bethesda, MD, USA) and in Japan. The scientific team that created the imaging compound was led by Hisataka Kobayashi, M.D., Ph.D., from NCI's Center for Cancer Research (CCR), in collaboration with Yasuteru Urano, Ph.D., from the University of Tokyo (Japan).

"These [fluorescing-imaging] compounds may allow clinicians to monitor a patient's response to cancer therapy by allowing them to visualize whether a drug hits its target and whether hitting the target leads to shrinkage of the tumor," said Dr. Kobayashi. He added, "Our design concept is very versatile and can be used to detect many types of cancer. Unlike other activatable fluorescent compounds, our compound consists of a targeting agent and a fluorescing agent that act independently. We can target the fluorescing agent to different types of cancer cells by using any antibody or molecule that is internalized by the targeted cells after it binds to the cell's surface proteins."

The new compound was described online in Nature Medicine on December 7, 2008.

Related Links:

US National Institutes of Health
University of Tokyo


New
Gold Member
Troponin T QC
Troponin T Quality Control
Unit-Dose Packaging solution
HLX
New
Thyroid Stimulating Hormone Assay
Neonatal TSH ELISA Kit
New
H.pylori DNA Extraction Kit
Savvygen Stool NA Extraction Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate Arc System has been granted US FDA 510(k) clearance (Photo courtesy of Accelerate Diagnostics)

Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR

Delayed administration of antibiotics to patients with bloodstream infections significantly increases the risk of morbidity and mortality. For optimal therapeutic outcomes, it is crucial to rapidly identify... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.