We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




DNA Methylation Analysis Detects Early Colorectal Tumors

By LabMedica International staff writers
Posted on 26 Jul 2010
Print article
Promoter methylation detection on cell neoplasia was analyzed by quantitative high-resolution melting assays (HRM) in formalin-fixed paraffin-embedded (FFPE) tissues.

HRM is based on the melting properties of DNA in solution. The principle of this method is that bisulfite-treated DNA templates with different contents of methyl cytosine can be distinguished by melting analysis based on differences in melting temperatures. Analysis of DNA methylation is a promising tool for early cancer detection, risk assessment, and response to therapy.

A recent study evaluated HRM assays for detection of promoter methylation on archival FFPE tissues from individuals with colorectal cancer. This sensitive assay can be adapted and used to detect low amounts of methylated cells within a tumor, or even to detect low numbers of tumor cells in the background of nontumor cells in lymph nodes and other organs. Neoplasia is characterized by "methylation imbalance" where genome-wide hypomethylation is accompanied by localized hypermethylation and an increase in expression of DNA methyltransferase.

The applicability of HRM for detection of promoter methylation was demonstrated using assays for O6-methylguanine-DNA methyltransferase (MGMT), adenomatous polyposis coli (APC), glutathione S-transferase P1 (GSTP1), and phosphatase and tension homolog deleted on chromosome 10 (PTEN) promoters in methylated DNA dilution matrix. In a second step, HRM assays for MGMT and APC were tested on DNA isolated from fresh and FFPE human cancer cell lines. These established MGMT and APC HRM assays were analyzed using archival FFPE colorectal tumor specimens. HRM assays were performed with the Roche LightCycler Instrument (Roche Diagnostics; Basel, Switzerland). Methylated DNA levels as low as 1% were reproducibly detected in a background of unmethylated DNA. For certain applications, such as detection of rare events or risk stratification of individuals based on methylation status of specific markers, high sensitivity of the assay is important. The results of the study were issued in 2009 in Roche Applied Science Cancer Research Application Note, No. 3.

HRM is a relatively simple and cost-effective method, since it does not require expensive probes and reference gene assays for normalization. With HRM, all CpGs within the amplicon are analyzed, enabling the assay to distinguish heterogeneous from homogeneous methylation by the shape of the melting curve. This ability can be of importance, because methylation patterns at promoter CpG islands are typically not homogeneous.

Related Links:

Roche


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Clostridium Difficile Test
VIDITEST C. Difficile Toxin A+B (Card) Rapid Test
New
Thyroid Stimulating Hormone Assay
Neonatal TSH ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.