We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Liquid Biopsy Identifies Mutations Predicting Ovarian Cancer Treatment Response

By LabMedica International staff writers
Posted on 29 May 2019
Print article
Image: Circulating tumor DNA provides treatment options for the most common ovarian cancer type (Photo courtesy of the University of Turku).
Image: Circulating tumor DNA provides treatment options for the most common ovarian cancer type (Photo courtesy of the University of Turku).
Effective treatment of metastatic solid cancers is hampered by intrapatient heterogeneity, tumor evolution, and the paucity of representative tissue samples to guide treatment decisions. Analysis of circulating tumor DNA (ctDNA) is an approach with the potential of overcoming all three obstacles.

Circulating tumor DNA sampling is a clinically attractive, minimally invasive technique that is based on the observation that tumor cells leak DNA to the bloodstream, where it can be captured by genomic assays. ctDNA can be used to monitor tumor evolution, detect cancer early, and monitor treatment efficacy.

Scientists at the University of Helsinki (Helsinki, Finland) and their associates implemented a clinical ctDNA workflow to detect clinically actionable alterations in more than 500 cancer-related genes. They applied the workflow to a prospective cohort consisting of 78 ctDNA samples from 12 patients with high-grade serous ovarian cancer before, during, and after treatment.

Cell-free DNA (cfDNA) was extracted from plasma samples and subjected to 1000× targeted Illumina Hi-Seq sequencing at BGI using their Oseq Solid Cancer Panel with more than 500 clinically actionable gene. Potentially clinically actionable alterations were validated through immunohistochemistry (IHC) and in situ hybridization for alterations classified as most prominent, and shown to exist in patients’ tumor tissue. Serum samples were prepared and serum CA125 (IU/mL) levels were analyzed from serum using a chemiluminescent microparticle immunoassay on an Abbott Architect i2000 system within the hospital routine.

The team reported that the results show good concordance of mutations and copy number alterations in ctDNA and tumor samples, and alterations associated with clinically available drugs were detected in seven patients (58%). Treatment of one chemoresistant patient was changed on the basis of detection of ERBB2 amplification, and this ctDNA-guided decision was followed by significant tumor shrinkage and complete normalization of the cancer antigen 125 tumor marker.

The authors concluded that their results demonstrated a proof of concept for using ctDNA to guide clinical decisions. Furthermore, their results show that longitudinal ctDNA samples can be used to identify poor-responding patients after the first cycles of chemotherapy. They provided what they believe to be the first comprehensive, open-source ctDNA workflow for detecting clinically actionable alterations in solid cancers. The study was published on May 3, 2019, in the Journal of Clinical Oncology.

Related Links:
University of Helsinki

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.