We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Liquid Biopsy Identifies Mutations Predicting Ovarian Cancer Treatment Response

By LabMedica International staff writers
Posted on 29 May 2019
Print article
Image: Circulating tumor DNA provides treatment options for the most common ovarian cancer type (Photo courtesy of the University of Turku).
Image: Circulating tumor DNA provides treatment options for the most common ovarian cancer type (Photo courtesy of the University of Turku).
Effective treatment of metastatic solid cancers is hampered by intrapatient heterogeneity, tumor evolution, and the paucity of representative tissue samples to guide treatment decisions. Analysis of circulating tumor DNA (ctDNA) is an approach with the potential of overcoming all three obstacles.

Circulating tumor DNA sampling is a clinically attractive, minimally invasive technique that is based on the observation that tumor cells leak DNA to the bloodstream, where it can be captured by genomic assays. ctDNA can be used to monitor tumor evolution, detect cancer early, and monitor treatment efficacy.

Scientists at the University of Helsinki (Helsinki, Finland) and their associates implemented a clinical ctDNA workflow to detect clinically actionable alterations in more than 500 cancer-related genes. They applied the workflow to a prospective cohort consisting of 78 ctDNA samples from 12 patients with high-grade serous ovarian cancer before, during, and after treatment.

Cell-free DNA (cfDNA) was extracted from plasma samples and subjected to 1000× targeted Illumina Hi-Seq sequencing at BGI using their Oseq Solid Cancer Panel with more than 500 clinically actionable gene. Potentially clinically actionable alterations were validated through immunohistochemistry (IHC) and in situ hybridization for alterations classified as most prominent, and shown to exist in patients’ tumor tissue. Serum samples were prepared and serum CA125 (IU/mL) levels were analyzed from serum using a chemiluminescent microparticle immunoassay on an Abbott Architect i2000 system within the hospital routine.

The team reported that the results show good concordance of mutations and copy number alterations in ctDNA and tumor samples, and alterations associated with clinically available drugs were detected in seven patients (58%). Treatment of one chemoresistant patient was changed on the basis of detection of ERBB2 amplification, and this ctDNA-guided decision was followed by significant tumor shrinkage and complete normalization of the cancer antigen 125 tumor marker.

The authors concluded that their results demonstrated a proof of concept for using ctDNA to guide clinical decisions. Furthermore, their results show that longitudinal ctDNA samples can be used to identify poor-responding patients after the first cycles of chemotherapy. They provided what they believe to be the first comprehensive, open-source ctDNA workflow for detecting clinically actionable alterations in solid cancers. The study was published on May 3, 2019, in the Journal of Clinical Oncology.

Related Links:
University of Helsinki

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Rocking Shaker
HumaRock
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.