We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Fluidigm

Fluidigm Corporation focuses on the most pressing needs in translational and clinical research, including cancer, imm... read more Featured Products: More products

Download Mobile App




Imaging Mass Cytometry Uncovers Novel Breast Cancer Subgroups

By LabMedica International staff writers
Posted on 03 Feb 2020
Print article
Image: The Hyperion Imaging System brings proven CyTOF technology together with imaging capability to empower simultaneous interrogation of four to 37 protein markers using Imaging Mass Cytometry (Photo courtesy of Fluidigm).
Image: The Hyperion Imaging System brings proven CyTOF technology together with imaging capability to empower simultaneous interrogation of four to 37 protein markers using Imaging Mass Cytometry (Photo courtesy of Fluidigm).
Changing the course of how diseases are treated and ultimately cured requires a comprehensive understanding of complex cellular phenotypes and their interrelationships in the spatial context of the tissue microenvironment.

Single-cell analyses have revealed extensive heterogeneity between and within human tumors, but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions.

Scientists at the University of Zurich (Zurich, Switzerland) and their colleagues used imaging mass cytometry to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumor tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. The team concentrated their efforts on single cells within these images to deeply profile tumors' phenotypes and organization.

The investigators used the Hyperion Imaging System (Fluidigm, South San Francisco, CA, USA) which combines immunohistochemical staining with mass-spectrometry-based detection to generate images. For their analysis, they designed a breast cancer-specific imaging mass cytometry panel of 35 antibodies, including ones aimed at detecting established targets like estrogen receptor, progesterone receptor, and HER2, but also the proliferation marker Ki-67 and cell lineage markers. The team reported that their images were comparable to those generated via immunohistochemistry or immunofluorescence approaches.

By quantifying the expression of these markers, the team could gauge the spatial features of these single cells and place them into phenotype clusters, of which they identified 14 main ones. Additionally, they uncovered 18 single-cell pathology subgroups. These subgroups, they noted, differed from the classical clinical subtypes and were associated with distinct clinical outcomes. For instance, single-cell pathology subgroup 1 (SCP1) was associated with patients with a promising prognosis, while SCP3 was linked to a poorer prognosis.

When they compared clinically defined subtypes and single-cell pathology subgroups, the scientists found the single-cell-based approach was better able to predict the overall survival of a patient. They replicated their analysis on a set of tumor samples from 73 patients and likewise uncovered the same cellular metaclusters and single-cell pathology subgroups. They noted, though, a difference in the proportion of the subgroups present, which they attributed to differences in the patient-selection strategies for the two cohorts.

Chris Linthwaite, MBA, president and CEO of Fluidigm, said, “This landmark study is the first to demonstrate the potential clinical value of highly multiplexed Imaging Mass Cytometry to identify breast cancer subtypes that correlate with clinical outcomes. By shedding new light with single-cell spatial images and data about the features of the tumor microenvironment, we believe this study will further increase adoption of IMC in translational and clinical investigatios to deliver better predictive and personalized approaches to cancer care in the future.” The study was published on January 20, 2020 in the journal Nature.

Related Links:
University of Zurich
Fluidigm


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.