We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cancer Cells Reprogram Immune Cells to Assist in Metastasis

By LabMedica International staff writers
Posted on 20 Jul 2020
Print article
Image: A blue tumor organoid surrounded by red NK cells (Photo courtesy of Isaac Chan, MD, PhD).
Image: A blue tumor organoid surrounded by red NK cells (Photo courtesy of Isaac Chan, MD, PhD).
Natural killer (NK) cells, a type of immune cell, are known to limit metastasis by inducing the death of cancer cells, but metastases still form in patients, so there must be ways for cancer cells to escape.

The loss of immunosurveillance is critical to breast cancer metastasis, immune checkpoint blockade has not been as effective in treating metastatic breast cancer as in melanoma or lung cancer. Breast cancer cells must overcome NK cell surveillance to form distant metastases, yet currently there is limited understanding of how metastatic cancer cells escape NK cell regulation.

Oncologists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and their colleagues used ex vivo and in vivo models of metastasis, to establish that keratin-14+ breast cancer cells are vulnerable to NK cells. They then discovered that exposure to cancer cells causes NK cells to lose their cytotoxic ability and promote metastatic outgrowth.

Gene expression comparisons revealed that healthy NK cells have an active NK cell molecular phenotype, whereas tumor-exposed (teNK) cells resemble resting NK cells. Receptor–ligand analysis between teNK cells and tumor cells revealed multiple potential targets. The team next showed that treatment with antibodies targeting T cell immunoreceptor with Ig and ITIM domains (TIGIT), antibodies targeting killer cell leptin-like receptor G1 (KLRG1), or small-molecule inhibitors of DNA methyltransferases (DMNT) each reduced colony formation. Combinations of DNMT inhibitors with anti-TIGIT or anti-KLRG1 antibodies further reduced metastatic potential.

Isaac Chan, MD, PhD, a Medical Oncologist and lead author of the study, said, “Metastatic disease is the main driver of breast cancer deaths, and we need a deeper understanding of how and why it occurs. Our study has identified a new strategy for cancer cells to co-opt the immune system. If we could prevent or reverse natural killer cell reprogramming in patients, it could be a new way to stop metastasis and reduce breast cancer mortality.”

The authors proposed that NK-directed therapies targeting these pathways would be effective in the adjuvant setting to prevent metastatic recurrence. The process may also apply to other cancer types. Immunotherapies that target NK cells could also potentially be used together with existing immunotherapies that stimulate T cells to fight cancer. The study was published on July 9, 2020 in the Journal of Cell Biology.

Related Links:
Johns Hopkins Kimmel Cancer Center

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.