We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Jagged Ends of Double-Stranded DNA Characterized

By LabMedica International staff writers
Posted on 10 Sep 2020
Print article
Image: Schematic diagram of fetal and maternal DNA as studied in the detection and characterization of jagged ends of double-stranded DNA in plasma (Photo courtesy of Ariosa Diagnostics).
Image: Schematic diagram of fetal and maternal DNA as studied in the detection and characterization of jagged ends of double-stranded DNA in plasma (Photo courtesy of Ariosa Diagnostics).
Cell-free DNA in plasma has been used for noninvasive prenatal testing and cancer liquid biopsy. The physical properties of cell-free DNA fragments in plasma, such as fragment sizes and ends, have attracted considerable recent interest.

This awareness has led to the emerging field of cell-free DNA fragmentomics. However, one aspect of plasma DNA fragmentomics as to whether double-stranded plasma molecules might carry single-stranded ends, termed a jagged end, remains underexplored.

A group of scientists at the Chinese University of Hong Kong (Shatin, Hong Kong SAR, China) and their associates collected blood samples from a cohort 30 pregnant women, as well as from another cohort that included 34 hepatocellular carcinoma (HCC) patients, eight healthy controls, and 17 chronic hepatitis B virus patients. After amplifying and extracting plasma from the samples, the team performed a jagged end by sequencing analysis (Jag-seq) on the two cohorts. The team developed two variants of Jag-seq to investigate the presence of jagged ends in a plasma DNA pool. Jag-seq applies DNA end repair to introduce differential methylation signals between the original sequence and the jagged ends, depending on whether unmethylated or methylated cytosines were used in the DNA end-repair process.

In the first cohort, the scientists used Jag-seq (methylated) to look for differences in jaggedness between maternal and fetal cfDNA in the pregnant women. They saw that the average jagged end length of fetal DNA molecules was higher than that of the maternal counterparts and that fetal DNA was more jagged overall. In the second cohort, they applied Jag-seq (unmethylated) to the HCC blood samples, finding that tumor-derived DNA molecules showed an increased jaggedness compared to non-tumor DNA. While the approach had an area under the operating curve of 0.87, they noted that the method would likely be used in combination with other approaches to aim for even higher sensitivity and specificity. In addition, the team saw that jaggedness varied depending on plasma DNA fragment sizes and appeared to be linked to nucelosomal patterns.

The authors concluded that in the plasma of pregnant women, the jaggedness of fetal DNA molecules was higher than that of the maternal counterparts. The jaggedness of plasma DNA correlated with the fetal DNA fraction. Similarly, in the plasma of cancer patients, tumor-derived DNA molecules in patients with hepatocellular carcinoma showed an elevated jaggedness compared with non-tumoral DNA. The study was published on August 14, 2020 in the journal Genome Research.

Related Links:
Chinese University of Hong Kong

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.