We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Assay Uses Novel Method for Early Detection of Ovarian Cancer

By LabMedica International staff writers
Posted on 05 Jul 2022
Print article
Image: New data demonstrates promise of novel extracellular vesicle biomarker-based approach for early cancer detection (Photo courtesy of Mercy BioAnalytics)
Image: New data demonstrates promise of novel extracellular vesicle biomarker-based approach for early cancer detection (Photo courtesy of Mercy BioAnalytics)

High-grade serious ovarian cancer (HGSOC) is the most aggressive of all ovarian cancers and accounts for up to 70% of all ovarian cancer cases. Nearly 50% of ovarian cancer is detected at stage III or stage IV with poor survival outcomes. Current surveillance methods, including CA125, a current standard of care for ovarian cancer diagnosis, and ultrasound, are not effective enough at detecting early-stage disease. Emerging methods for early cancer detection rely primarily on tumor DNA circulating in blood (ctDNA), which is scarce in early-stage cancers, costly to measure, and not reliably obtained from tumors that are not well vascularized. Now, an assay that uses a novel method of analyzing biomarkers based on individual extracellular vesicles (EVs) has substantially outperformed CA125 when distinguishing patients with early-stage HGSOC from women with benign conditions in a new study.

Mercy BioAnalytics, Inc.’s (Natick, MA, USA) novel Mercy Halo technology enables simultaneous detection of multiple cancer-related biomarkers co-localized on the surface of individual tumor-derived extracellular vesicles, which are abundant in circulation and can be readily measured. The Mercy Halo OC assay is designed to detect stage I/II ovarian cancer and to distinguish cancer from benign conditions.

The study found that the Mercy Halo OC assay displayed separation of HGSOC from benign adnexal masses and healthy controls that was superior to CA125. When run against a variety of off-target cancers and inflammatory conditions, it discriminated them from ovarian cancer in most instances When run in paired serum and plasma samples, the Mercy Halo OC assay had highly correlated signals with virtually no bias, indicating that it can be validated further in established blood biorepositories, which offers the potential to accelerate clinical study and development.

“These preliminary data suggest this approach may detect all stages of ovarian cancer with high sensitivity at a very high specificity and works equally well in both plasma and serum. Mercy’s assay shows promise in improving on CA125 by distinguishing stage I/II cancer from benign ovarian tumors and could have clinical utility for both early detection and surgical referral recommendation for benign and malignant ovarian tumors,” said Christine D. Berg, M.D., retired Chief, Early Detection Research Group, National Institutes of Health.

“Too many women today suffer, and ultimately lose their lives, as a result of the late detection of ovarian cancer. We are encouraged by the data of our most recent study comparing the Mercy Halo Ovarian Cancer assay to CA125 in detecting early-stage ovarian cancer and distinguishing it from benign disease,” said Paul Blavin, Chief Executive Officer of Mercy BioAnalytics. “Our unique approach, focused on co-localization to interrogate single extracellular vesicles, has important advantages over current early cancer detection methods, and our work thus far has fueled our passion for relieving suffering and saving lives through the early detection of cancer. We look forward to expanding our studies of the Mercy Halo Ovarian Cancer assay to include average risk, asymptomatic women who might benefit from an improved ovarian cancer screening paradigm.”

Related Links:
Mercy BioAnalytics, Inc. 

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.