We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Digital Spatial Profiling Augments Pathology in Diagnosing Pulmonary Fibrosis

By LabMedica International staff writers
Posted on 27 Jul 2022
Print article
Image: p16-positive foci were defined as concurrent expression of p16 (brown) in loose collections of fibroblasts the overlying flat (A), simple cuboidal (B and C) or columnar epithelium (D) (Photo courtesy of Lawson Health Research Institute)
Image: p16-positive foci were defined as concurrent expression of p16 (brown) in loose collections of fibroblasts the overlying flat (A), simple cuboidal (B and C) or columnar epithelium (D) (Photo courtesy of Lawson Health Research Institute)

A team of Canadian respiratory disease researchers reported that the p16 (cyclin-dependent kinase inhibitor) protein could be used to diagnose patients with the serious lung disease idiopathic pulmonary fibrosis.

Idiopathic pulmonary fibrosis (IPF) is one of the most serious and common types of fibrotic interstitial lung diseases (ILDs), occurring most often in patients 60 years of age and older with an average survival time of three to five years. It is the number one reason for lung transplants. IPF is associated with increased expression of cyclin-dependent kinase inhibitors such as p16 and p21, and subsequent induction of cell cycle arrest, cellular senescence, and pro-fibrotic gene expression.

Investigators at Lawson Health Research Institute (London, ON, Canada) conducted a study that sought to link p16-expression with a diagnosis of IPF or other fibrotic interstitial lung diseases.

For this study, they first used surgical lung biopsy to identify 86 cases of fibrosing ILD. Immunohistochemistry for p16 was performed on sections with the most active fibrosis. Foci that were p16-positive (loose collection of p16-positive fibroblasts with overlying p16-positive epithelium) were identified on digital slides and quantified. Twenty-four areas including senescent foci, fibrotic, and normal areas were characterized using in situ RNA expression analysis with digital spatial profiling (DSP) in selected cases.

In this study, digital spatial RNA high-resolution profiling with the GeoMX platform was used for the first time in fibrotic ILD to explore transcriptional differences in fibroblastic foci versus fibrotic and normal-looking areas in IPF cases.

The NanoString Technologies (Seattle, WA, USA) GeoMX Digital Spatial Profiling (DSP) method provided highly multiplex spatial profiling of RNAs on formalin-fixed, paraffin-embedded (FFPE) samples. The DSP platform quantified the abundance of RNA by counting unique indexing oligonucleotides assigned to each target of interest. Whole tissue sections, FFPE, or fresh frozen, were imaged and stained for RNA or protein. Investigators then precisely selected which tissue compartments or cell types to profile based on the biology, and subsequently count expression levels.

Results revealed that the presence of p16-positive foci was specific for the diagnosis of IPF, where 50% of cases expressed some level of p16 and 26% were p16-high. There was no relationship between radiographic pattern and p16 expression. However, there was increased expression of cyclin-dependent kinase inhibitors, collagens, and matrix remodeling genes within p16-positive foci, and cases with high p16 expression had shorter lung transplant-free survival. The DSP approach demonstrated that fibroblastic foci exhibited transcriptional features clearly distinct from that of normal-looking and even fibrotic areas.

Senior author Dr. Marco Mura, associate scientist at Lawson Health Research Institute, said, "We developed a method that is actually quite inexpensive to increase the diagnostic accuracy of the biopsy and help to avoid unclassifiable cases. The method has a prognostic value, so it helps predict survival of these patients at the time of biopsy. We have no tests that we can apply to the (lung) biopsy other than the pathologist looking at it and saying “OK, this biopsy shows this pattern”. There were absolutely zero additional biomarker tests to reinforce, validate, or support the diagnosis. So, this will be the first time that we implement such test biomarkers in clinical practice."

The study was published in the June 7, 2022, online edition of the journal Respiratory Research.

Related Links:
Lawson Health Research Institute 
NanoString Technologies

 

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Silver Member
ACTH Assay
ACTH ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.