We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App




Super-Enhancer Induces Oncogenic Driver in Colorectal Carcinoma

By LabMedica International staff writers
Posted on 24 Oct 2022
Print article
Image: Agilent Technologies 2100 Bioanalyzer and DNA chip (Photo courtesy of GMI)
Image: Agilent Technologies 2100 Bioanalyzer and DNA chip (Photo courtesy of GMI)

The etiology of super-enhancer (SE) reprogramming in cancer is incompletely understood, but is widely attributed to cancer cell-intrinsic genomic alterations. Non-coding SE can become focally amplified in multiple malignancies.

Whether the local tumor microenvironment influences the SE landscape of cancer cells is poorly understood. However, the extent this phenomenon recapitulates enhancer reprogramming in cancer is unclear. Furthermore, it is unknown whether environment-induced enhancer changes are mere passenger events or functionally benefit tumor growth.

A large team of Oncological Scientists at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and their colleagues profiled potential super enhancer sequences in fresh tumor and normal samples from 15 colon cancer patients undergoing surgery, focusing in on recurrent super enhancers that respond to inflammatory cytokines and boost PDZK1IP1 gene expression.

The team used chromatin immunoprecipitation sequencing focused on the histone 3 lysine 27 acetylation (H3K27ac) epigenetic histone modification. Chromatin immunoprecipitation was followed by deep sequencing (ChIP-seq), and DNA was run on an Agilent High Sensitivity DNA chip using an Agilent Technologies 2100 Bioanalyzer (Santa Clara, CA, USA) for quality control. H3K27ac ChIP-seq antibodies were purchased. Sample-matched RNA-seq and H3K27ac ChIP-seq across multiple patient cohorts were utilized to predict SE target genes. Cellular glycolysis was measured using the Agilent XF Glycolysis stress test kit and XP Mitochondrial stress test kit. Cytokine profiling was performed by Eve Technologies using the Human Cytokine Array/Chemokine Array 48-plex platform (Calgary, AB, Canada).

The investigators identified 2,026 total SEs in tumor and normal, which accounted for approximately 50% of the H3K27ac signal, with 95% saturation of unique SE discovery at 10 and 11 patients for adjacent normal and primary colorectal carcinoma (CRC), respectively. H3K27ac deposition at these 2,026 SEs exhibits tissue-of-origin specificity, clustering separately from other malignancies under hierarchical unsupervised analyses when re-processed together with their datasets using the same pipeline. Of the primary specimen enriched SEs, nine SEs were among the top 100 SEs they found to be enriched in primary CRC over patient-matched normal colon.

Ramon E. Parsons, MD, PhD, a Professor of Oncology and senior author of study, said, “What this means for most patients with colon cancer is that inflammation that's occurring in the tumor is contributing to the tumor's growth. This stresses the importance of understanding what we can do to curb the inflammatory effects in the colon through prevention or understanding what dietary effects might have on the microenvironment in the colon.”

The authors concluded that they had demonstrated mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. They showed this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens. The study was published on Oct 17, 2022 in the journal Nature Communications.

Related Links:
Icahn School of Medicine at Mount Sinai 
Agilent Technologies 
Eve Technologies 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
PoC Testing Device
QuikRead
New
Control Material
Blood Culture Identification Control Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The PAXgene Urine Liquid Biopsy Set is the first standardized preanalytical workflow that stabilizes cell-free DNA in urine for subsequent analysis (Photo courtesy of PreAnalytiX)

Liquid Biopsy Solution Enables Non-Invasive Sample Collection and Direct Cell-Free DNA Stabilization from Urine

Urine cell-free DNA (cfDNA) presents significant potential for research and future clinical applications. It facilitates the measurement and analysis of cfDNA fragments, detection of genetic alterations,... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.