We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




High-Resolution 3D Imaging Reveals Tuberculosis and COVID-19 Lung Lesions

By LabMedica International staff writers
Posted on 01 Dec 2022
Print article
Image: 3E segmentation of ginger-root shaped necrotic lesions (yellow) and surrounding vasculature (red) (Photo courtesy of Africa Health Research Institute)
Image: 3E segmentation of ginger-root shaped necrotic lesions (yellow) and surrounding vasculature (red) (Photo courtesy of Africa Health Research Institute)

Gross anatomy reveals three-dimensional shapes of pathology at a large scale. Histology, in contrast, reveals the microscopic anatomy of biological structures. But that magnification comes at a cost — histology shows only two-dimensional shapes because it studies small, flat slices of stained tissue. This lack of three dimensions means histology can miss important pathophysiologies in the damaged lungs of patients with tuberculosis, or TB, and COVID-19, the two deadliest infectious diseases of mankind in recent years.

Now researchers at the University of Alabama at Birmingham (UAB, Birmingham, AL, USA) have reported that a powerful imaging tool called microCT can be used to create a three-dimensional, or 3D, atlas of the spectrum of lung lesions in both tuberculosis and COVID-19, at near-microscopic levels. This gives unexpected insights into the unseen microarchitecture of the lesions within the context of the whole lung. One of the benefits of microCT is creating a 3D image of a lesion. In a tuberculosis paper last year, the researchers had showed that power. For 70 years, they said, clinicians thought TB granulomas in the lungs of patients were spherical or ovoid because conventional histology showed round features, and researchers intuitively assumed those meant the granulomas were spherical or ovoid. But such round images are similar to cutting a very thin slice through a thick tree branch and assuming the branch is round or oval. Instead of spheres, the 3D images revealed the larger granulomas as anything but round - they had complex, branched shapes. One looked somewhat like a ginger root, and another like a cluster of early buds on a cherry tree, before the blossoms appear.

In the current study, the researchers also identified an unusual spatial arrangement of vasculature within an entire lobe of a COVID-19 lung, and 3D images of blood vessels revealed microangiopathy associated with hemorrhage. Notably, this imaging of pathological anomalies revealed hidden pathological structures that might have been disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID-19 lobes. The researchers compared microCT with two lower-resolution clinical imaging platforms that do not yield accurate three-dimensional images of TB lesions - high-resolution computed X-ray tomography, which is used to aid diagnosis of tuberculosis, and low resolution, low-energy “soft” X-ray CT, commonly used in mammography.

MicroCT imaging provides higher resolution compared to the other two; but its samples must be close to the X-ray source, so microCT analysis is limited to post-mortem or resected lung tissue. Worldwide, a vast number of formalin-fixed, paraffin-embedded tuberculosis lung specimens from decades of research are available. The research team showed that microCT is able to directly characterize calcium deposits, as well as necrotic and partially calcified necrotic granulomas in those specimens. Further, they found that removing the paraffin allowed visualization of more detailed microanatomical features.

“To the best of our knowledge, this is the first study to use microCT to elucidate macro- and microscopic features of tuberculosis lesions such as cavitation, calcification and necrosis, as well as COVID-19 pathophysiology across large lung samples in three dimensions,” said Adrie Steyn, Ph.D., a professor in the Department of Microbiology at the University of Alabama at Birmingham who led the study. “A major new contribution of this study is the characterization of obliterated airways in TB and hemorrhage from ruptured blood vessels in COVID-19 lungs that would not be possible with conventional two-dimensional platforms. Further, microCT analysis of an entire COVID-19 lung lobe in 3D represents a technical advance that enabled us to contextualize vascular pathology within the greater lung architecture and visualize vascular micro-architecture in remarkable detail.”

“We anticipate that microCT could be used to establish a three-dimensional reference atlas of the human tuberculous lung derived from digitized 3D image libraries of tissue, organs from new patients and existing fixed-tissue libraries,” Steyn said. “This atlas could be used to identify novel imaging biomarkers. Also, we expect an atlas of tuberculosis and COVID-19 lesion types will inform our understanding of the failure of localized immunity and be an important resource for therapeutic and diagnostic development.”

Related Links:
UAB

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.