We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Computer-Aided Cell Analysis Enables Faster Diagnosis of Blood Diseases

By LabMedica International staff writers
Posted on 11 Aug 2023
Print article
Image: An AI algorithm can help physicians diagnose blood disorders (Photo courtesy of Freepik)
Image: An AI algorithm can help physicians diagnose blood disorders (Photo courtesy of Freepik)

Blood disorders are frequently characterized by alterations in the quantities and shapes of red and white blood cells. Traditional methods for diagnosing the disease involves examining blood smears on a slide under a microscope, although evaluating these changes can be challenging even for experienced professionals, as subtle alterations can affect only a small fraction of the tens of thousands of visible cells. Consequently, distinguishing between diseases is not always simple. For instance, the visible changes in the blood of individuals with myelodysplastic syndrome (MDS), an early form of leukemia, often resemble those seen in less harmful types of anemia. The definitive diagnosis of MDS requires more invasive procedures such as bone marrow biopsies and molecular genetic testing.

Scientists from the German Cancer Research Center (DKFZ, Heidelberg, Germany) and the Cambridge Stem Cell Institute (Cambridge, UK) have now developed an artificial intelligence (AI) system capable of identifying and characterizing white and red blood cells in microscopic images of blood samples. This algorithm, named Haemorasis, aids physicians in diagnosing blood disorders and is publicly accessible as an open-source tool for research purposes. Initially, the scientists trained Haemorasis to recognize cell morphology using over half a million white blood cells and millions of red blood cells from more than 300 individuals with various blood disorders (including different forms of anemia and MDS).

Leveraging this acquired knowledge, Haemorasis can now propose diagnoses for blood disorders and even differentiate genetic subtypes of these conditions. Additionally, the algorithm uncovers significant associations between specific cell shapes and diseases, a task complicated by the sheer volume of cells involved. Haemorasis underwent testing on three distinct patient groups to confirm its efficacy across diverse test centers and blood count scanner systems. Tailored for hematology diagnostics, Haemorasis aids in providing a more accurate initial diagnosis of blood disorders, which is an essential step in identifying patients who may require more invasive procedures like bone marrow tests or genetic analysis. Ongoing studies will explore the potential limitations of the method.

"Automated cell analysis with Haemorasis could complement routine diagnosis of blood disorders in the future. So far, the algorithm has only been trained on specific diseases - but we still see great potential in this approach," said Moritz Gerstung of DKFZ.

Related Links:
German Cancer Research Center
Cambridge Stem Cell Institute

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Hematology Analyzer
BH-6180
New
Electroporation System
Gibco CTS Xenon

Print article

Channels

Molecular Diagnostics

view channel
Image: The BIOTIA-ID urine NGS assay is a urine infectious disease test powered by genomics and AI (Photo courtesy of Shutterstock)

Genomics and AI-Powered Urine Infectious Disease Test Addresses Critical Need for Complicated UTIs

Urinary tract infections (UTIs) are the most prevalent outpatient infection, affecting over 7 million patients annually, with women being disproportionately impacted. UTIs can severely affect the quality... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The QuickMIC system (Photo courtesy of Gradientech)

Ultra-Rapid AST System Provides Critical Results for Sepsis Patients

Sepsis is a critical condition and one of the leading causes of death in hospitals. Millions of adults are diagnosed with sepsis each year, and it is also a primary reason for hospital readmissions.... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.