We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Bedside Scanning Device to Enable Slide-Free Pathology for Complete Surgical Tumor Removal

By LabMedica International staff writers
Posted on 15 Aug 2024
Print article
Project leads J. Quincy Brown (left), associate professor of biomedical engineering, and Brian Summa, associate professor of computer science, test a prototype of a new imaging system (Photo courtesy of Tulane University)
Project leads J. Quincy Brown (left), associate professor of biomedical engineering, and Brian Summa, associate professor of computer science, test a prototype of a new imaging system (Photo courtesy of Tulane University)

Annually, millions are diagnosed with cancer, with surgical removal being the first treatment option for solid tumors. However, distinguishing tumor margins from healthy tissue during surgery poses a challenge due to insufficient visual contrast. Current practices involve pathologists examining thin sections of tumors under microscopes to examine the borders between cancer and healthy tissue, but this method is time-consuming and only inspects a small portion of the tumor. Consequently, it can take several days or even weeks to confirm whether the entire tumor has been successfully removed. Researchers are now developing a sophisticated imaging system designed to instantly scan tumors during surgical procedures and ascertain within minutes if any cancerous tissue remains after the excision.

Researchers at Tulane University (New Orleans, LA, USA) are leading a project called MAGIC-SCAN (Machine-learning Assisted Gigantic Image Cancer margin SCANner) which aims to become one of the fastest high-resolution tissue scanners in the world. This system would be capable of identifying residual cancer cells on the surface of excised organs in a matter of minutes. The scanner would be trained on a vast database of clinical scans to accurately identify cancer cells at a cellular level, producing a detailed 3D map of the tumor’s surface. The new technology combines advances in microscopy, automation, computing, and machine learning, utilizing optical-sectioning super-resolution structured illumination microscopy to achieve twice the resolution of conventional microscopes.

This cutting-edge imaging tool promises to transform cancer surgery by enabling doctors, while the patient is still under anesthesia, to verify the complete removal of cancer, potentially eliminating the need for additional surgeries. The Tulane research team has been developing this technology with a focus on prostate and colorectal cancers—two of the most challenging tumors to excise—reducing detection time to approximately 45 minutes. They have built a prototype of this groundbreaking system and are now leading efforts to address the remaining technical, computing, and engineering challenges to actualize this device within five years. Efforts are underway to enhance imaging resolution quality and develop the necessary cyberinfrastructure to manage extensive data sets required for training the machine-learning models. Furthermore, the team plans to conduct clinical validation of the device and develop versions compliant with FDA regulations.

“Currently, it can take days to weeks before a surgeon knows whether all the tumor has been removed, and our goal is to get that down to 10 minutes, while the patient is still on the table,” said J. Quincy Brown, PhD, associate professor of biomedical engineering in the Tulane School of Science and Engineering and lead researcher on the project. “If successful, our work would transform cancer surgery as we know it.”

Related Links:
Tulane University

Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Adrenocorticotropic Hormone ELISA
ACTH ELISA
New
Chagas Rapid Test
OnSite Chagas Ab Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: New Alzheimer’s studies have revealed disease biology, risk for progression, and potential for a novel blood test (Photo courtesy of Adobe Stock)

Novel Blood Test Could Reveal Alzheimer’s Disease Biology and Risk for Progression

The inability to diagnose Alzheimer’s disease, the most prevalent form of dementia in the elderly, at an early stage of molecular pathology is considered a key reason why treatments fail in clinical trials.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.