We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Identification Method for Cancerous DNA to Reduce Need for Painful Biopsy Surgery

By LabMedica International staff writers
Posted on 09 Sep 2024
Print article
Image: Microfluidic testing in the lab (Photo courtesy of Heriot-Watt University)
Image: Microfluidic testing in the lab (Photo courtesy of Heriot-Watt University)

Currently, most cancer patients must undergo an invasive and expensive surgical biopsy to remove a tissue sample from their tumor to determine the best treatment options. However, all individuals have small amounts of DNA that circulate freely in their blood, which is not confined within blood cells. In cancer patients, some of this circulating free DNA (ctDNA) originates from their tumors. This ctDNA differs from their normal circulating DNA as it carries mutations that have turned these cells from healthy to cancerous. Thus, ctDNA can provide insights into the cancer's characteristics and indicate which treatments might be most effective. Existing methods to analyze ctDNA are hampered by its low abundance and the presence of a larger quantity of non-cancerous DNA in the blood samples.

Researchers at Heriot-Watt University (Edinburgh, UK) are now developing a novel method to identify cancerous DNA that could reduce the need for painful biopsies. This new technique, known as SNARE, aims to simplify the processing of blood samples to enhance the detection and characterization of cancerous DNA. The team is working on creating both robotic benchtop systems and microfluidic platforms (similar to certain types of lateral flow tests) and will evaluate these methods using blood samples from breast cancer patients to achieve more sensitive ctDNA detection and reduce the need for expensive DNA sequencing.

In patients with advanced-stage cancer, significant amounts of DNA in the bloodstream can often be detected, but by this stage, it is frequently too late for a cure. On the other hand, in early-stage cancer patients, where treatment success rates are higher, over 99% of the circulating free DNA typically originates from healthy cells, complicating the identification of cancerous mutations. The Heriot-Watt research team plans to further develop MicroSNARE, which they have already tested in the lab, with the aim of diagnosing, analyzing, and characterizing tumors at an earlier stage. They also aim to detect cancer recurrence before it can progress and spread. MicroSNARE promises a groundbreaking, less invasive approach to cancer detection, potentially enabling earlier diagnosis and intervention.

Related Links:
Heriot-Watt University

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.