We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Can Rapidly Detect Infection Risk

By LabMedica International staff writers
Posted on 11 Dec 2013
Print article
Image: Microfluidic device for six assays under the microscope (Photo courtesy of BioMEMS Resource Center).
Image: Microfluidic device for six assays under the microscope (Photo courtesy of BioMEMS Resource Center).
A device has been created that is able to detect a person's risk of infection from a drop of blood within minutes, as opposed to current methods, which can take up to two hours.

Neutrophil chemotaxis is critical for defense against infections and its alterations could lead to chronic inflammation and tissue injury and the central role that transient alterations of neutrophil chemotaxis could have on patient outcomes calls for its quantification in the laboratory.

Scientists at the Massachusetts General Hospital (Boston, MA, USA) designed a microfluidic device to study neutrophil chemotaxis from a single droplet of whole blood, which has three main components: a chemokine side chambers (200 × 200 μm), a central whole-blood loading chamber, and migration channels containing red blood cell (RBC) filtering regions.

The filter for each migration channel consists of 10 short channels (length about 75 μm) connected horizontally through an approximately 200-μm-long channel to create 90 degree bending sections capable of trapping the RBCs in order to prevent them from dispersing into the rest of the migration channel. A gradient of the chemoattractant is established along the migration channels by diffusion between the chemoattractant chambers and the central loading chamber.

The assay was validated by comparing neutrophil chemotaxis from finger prick, venous blood and purified neutrophil samples. There was a consistent average velocity of 19 ± 6 μm/minute and directionality of 91.1% between the three sources. The team quantified the variability in neutrophil chemotaxis between healthy donors and found no significant changes over time. The novel whole blood device was also used to monitor neutrophil chemotaxis function in a patient with 24% total body surface area burns over a three-week treatment period.

Daniel Irmia, MD, PhD, an assistant professor at the BioMicro Electrical Mechanical Systems Resource Center (BioMEMS; Boston, MA, USA) and a senior author of the study said, “In many cases, it may not be enough to just count the neutrophils. If neutrophils do not migrate well and cannot reach inside the tissues, this situation could have the same consequences as a low neutrophil count.” The authors concluded that being able to measure patients' risk of infections in a matter of minutes from only a droplet of blood is a significant development and one that will improve current treatment. The study was published on October 2, 2013, in the journal Technology.

Related Links:

Massachusetts General Hospital
BioMEMS Resource Center 


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.