We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid, Simple, Inexpensive Diagnostic Tests Developed Using DNA

By LabMedica International staff writers
Posted on 12 Oct 2015
Print article
Image: Schematic representation of DNA-based electrochemical sensor (Photo courtesy of University of Montreal).
Image: Schematic representation of DNA-based electrochemical sensor (Photo courtesy of University of Montreal).
A highly selective DNA-based electrochemical sensor that utilizes steric hindrance effects to signal the presence of large macromolecules in a single-step procedure has been developed.

Electrochemical test's sensing principle may be generalized to many different targets, leading to inexpensive devices that could detect dozens of disease markers in less than five minutes. A large macromolecule, such as a protein, when bound to a signaling DNA strand generates steric hindrance effects, which limits the ability of this DNA to hybridize to a surface-attached complementary strand.

Scientists at the University of Montreal (QC, Canada) and their Italian colleagues used DNA molecules to developed rapid, inexpensive medical diagnostic tests that take only a few minutes to perform. Their findings, may aid efforts to build point-of-care devices for quick medical diagnosis of various diseases ranging from cancer, allergies, autoimmune diseases, sexually transmitted diseases (STDs), and many others.

They demonstrated that the efficiency of hybridization of this signaling DNA was inversely correlated with the size of the molecule attached to it, following a semi-logarithmic relationship. Using this steric hindrance hybridization assay in an electrochemical format (eSHHA), they demonstrated the multiplexed, quantitative, one-step detection of various macromolecules in the low nanomolar range, in less than 10 minutes directly in whole blood. The sensing principle was straightforward as the diagnostically relevant protein (green or red), if present, binds to an electro-active DNA strand, and limits the ability of this DNA to hybridize to its complementary strand located on the surface of a gold electrode.

Sahar Mashid, PhD, the first author of the study, said, “While working on the first generation of these DNA-base tests, we realized that proteins, despite their small size are big enough to run into each other and create steric effect (or traffic) at the surface of a sensor, which drastically reduced the signal of our tests. Instead of having to fight this basic repulsion effect, we instead decided to embrace this force and build a novel signaling mechanism, which detects steric effects when a protein marker binds to the DNA test.” The study was published online on September 4, 2015, in the Journal of the American Chemical Society.

Related Links:

University of Montreal


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.