We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Easy Test for Sickle Cell Disease Developed

By LabMedica International staff writers
Posted on 16 Nov 2015
Print article
Image: The device provides a simple, inexpensive, and quick test for the diagnosis and monitoring of sickle cell disease using a common smartphone (Photo courtesy of Peter Morenus).
Image: The device provides a simple, inexpensive, and quick test for the diagnosis and monitoring of sickle cell disease using a common smartphone (Photo courtesy of Peter Morenus).
A simple, inexpensive, and quick technique has been developed for the diagnosis and monitoring of sickle cell disease that can be used in regions where advanced medical technology and training are scarce.

Sickle cell disease affects 25% of people living in Central and West Africa and, if left undiagnosed, can cause life threatening “silent” strokes and lifelong damage. However, ubiquitous testing procedures have yet to be implemented in these areas, necessitating a simple, rapid, and accurate testing platform to diagnose sickle cell disease.

Biomedical engineers from the University of Connecticut (Storrs, CT, USA) developed a label-free, sensitive, and specific testing platform using only a small blood sample of less than 1 μL based on the higher density of sickle red blood cells under deoxygenated conditions. Testing was performed with a lightweight and compact 3D-printed attachment installed on a commercial smartphone. This attachment includes a light-emitting diode (LED) to illuminate the sample, an optical lens to magnify the image, and two permanent magnets for magnetic levitation of red blood cells.

A small blood sample from the patient was mixed with a common, salt-based solution sodium metabisulfite that draws oxygen out of the sickle cells, making them denser and easier to detect. The sample is then loaded into a disposable micro-capillary that is inserted into the tester attached to the smartphone. Inside the testing apparatus the micro-capillary passes between two magnets that are aligned so that the same poles face each other and create a magnetic field.

The capillary is then illuminated with an LED that is filtered through a ground glass diffuser and magnified by an internal lens. The smartphone's built-in camera captures the resulting image and presents it digitally on the phone's external display. The blood cells are floating inside the capillary, whether higher floating healthy red blood cells or lower floating sickle cells, can then be easily observed. The device also provides clinicians with a digital readout that assigns a numerical value to the sample density to assist with the diagnosis. The entire process takes less than 15 minutes.

Stephanie M. Knowlton, PhD, the lead author of the study, said, “With this device, you're getting much more specific information about your cells than some other tests. Rather than sending a sample to a laboratory and waiting three days to find out if you have this disease, with this device you get on-site and portable results right away. We believe a device like this could be very helpful in developing countries where laboratory resources may be limited.” The study was published on October 22, 2015, in the journal Scientific Reports.

Related Links:

University of Connecticut 


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.