We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Smartphone-Controlled Microfluidic Device Enables Rapid Influenza Detection

By LabMedica International staff writers
Posted on 15 Jul 2024
Print article
Image: Schematic illustration of the SEDphone system workflow (Photo courtesy of ZHU Cancan)
Image: Schematic illustration of the SEDphone system workflow (Photo courtesy of ZHU Cancan)

The influenza virus represents a significant public health concern, annually causing epidemics with high morbidity and mortality rates. The virus is known for its high mutation rate and the existence of multiple subtypes, which require varied clinical approaches. Consequently, there is a critical need for an accurate, rapid, and portable method to differentiate between influenza virus subtypes to manage virus transmission and inform clinical treatment decisions. Researchers have now developed a spatial encoding of a centrifugal microfluidic disc-integrated smartphone-controlled (SEDphone) platform for detecting influenza virus subtypes.

In a study, researchers from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (Anhui, China) developed a novel approach that combines Loop-mediated Isothermal Amplification (LAMP) with CRISPR/Cas12a technologies for rapid and accurate detection of various influenza viruses. This method amplifies target sequences using LAMP and detects them through CRISPR/Cas12a-mediated trans-cleavage activity, thus cleaving reporter probes and emitting fluorescent signals. This technique is highly sensitive and reduces the occurrence of false positives. To aid the detection of different influenza strains, the researchers devised a flexible model capable of targeting multiple flu types. Following optimization, this method can identify five influenza types (H1N1, H3N2, H5N1, H7N9, and Influenza B) within 45 minutes, even at low viral concentrations (10 copies/μL).

Furthermore, to facilitate simultaneous LAMP amplification and CRISPR detection, the team engineered a centrifugal microfluidic chip with spatial encoding features. They also developed a portable testing device, dubbed SEDphone, which operates via smartphone control. This device can simultaneously amplify and detect multiple influenza virus types. Incorporating a dual temperature zone design, it addresses the temperature variance required for both technologies. Clinical sample testing confirmed that this innovative method and the SEDphone device are effective in rapidly identifying various influenza subtypes. The research results were published in Sensors and Actuators: B. Chemical.

"Our research offers a new way to quickly and accurately detect various pathogens in real-time. This method can be used in fever clinics or at home, helping to reduce the risk of unnecessary cross-infection and easing the burden on healthcare systems," said Dr. ZHU Cancan, a member of the research team.

Related Links:
Hefei Institutes of Physical Science

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.