We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Faster Measurement of Vibrational Fingerprint of Molecules to Advance Biomedical Diagnostics

By LabMedica International staff writers
Posted on 25 Oct 2024
Print article
Image: The fastest Raman spectrometer on the planet (Photo courtesy of University of Tokyo)
Image: The fastest Raman spectrometer on the planet (Photo courtesy of University of Tokyo)

Identifying different types of molecules and cells is a vital process in both basic and applied science. Raman spectroscopy serves as a widely utilized measurement technique for this purpose. When a laser beam is directed at molecules, the light interacts with the vibrations and rotations of molecular bonds, causing a shift in the frequency of the scattered light. The resulting scattering spectra act as a unique “vibrational fingerprint” for each molecule. Despite its widespread use, there have been numerous efforts to enhance Raman spectroscopy, particularly because one of its main limitations is the measurement rate, which often prevents it from keeping pace with rapid changes in certain chemical and physical reactions. Now, scientists have successfully increased the measurement rate of Raman spectroscopy, paving the way for advancements in various applications such as ultrafast measurements of irreversible phenomena, high-speed hyperspectral Raman imaging, and high-throughput Raman flow cytometry.

Scientists at the Institute for Photon Science and Technology at the University of Tokyo (Tokyo, Japan) set to improve the measurement rate of Raman spectroscopy by building a system from scratch and managed to achieve a 100-fold increase. Since measurement rate has been a critical limitation, this enhancement could facilitate progress in numerous fields that depend on identifying molecules and cells, including biomedical diagnostics and material analysis. Drawing on their expertise in optics and photonics, the scientists integrated three key components: coherent Raman spectroscopy, which generates stronger signals than traditional spontaneous Raman spectroscopy; a specially designed ultrashort pulse laser; and time-stretch technology utilizing optical fibers. The results, published in the journal Ultrafast Science, show that the researchers achieved a measurement rate of 50 MSpectra/s (megaspectra per second), which is a 100-fold increase compared to the previous fastest measurement of 50 kSpectra/s (kilospectra per second). This advancement holds significant potential across a range of applications.

“We aim to apply our spectrometer to microscopy, enabling the capture of 2D or 3D images with Raman scattering spectra,” said Takuro Ideguchi of the Institute for Photon Science and Technology at the University of Tokyo, who was the principal investigator of the study. “Additionally, we envision its use in flow cytometry by combining this technology with microfluidics. These systems will enable high-throughput, label-free chemical imaging and spectroscopy of biomolecules in cells or tissues.”

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Orienta Tsutsugamushi Test
STANDARD Q Tsutsugamushi IgM/IgG
New
DVT/PE Test
VIDAS D-DIMER EXCLUSION II

Print article

Channels

Molecular Diagnostics

view channel
Image: Umbilical cord blood biomarkers may improve preterm infant care (Photo courtesy of Shutterstock)

Umbilical Cord Blood Test Could Identify Preterm Infants at Risk for Medical Complications

Advancements in medical technology and neonatology have significantly improved the care of prematurely born infants. However, these infants still face heightened risks for medical complications, such as... Read more

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Microbiology

view channel
Image: The Cytovale System isolates, images, and analyzes cells (Photo courtesy of Cytovale)

Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application

Sepsis is the leading cause of death and the most expensive condition treated in U.S. hospitals. The risk of death from sepsis increases by up to 8% for each hour that treatment is delayed, making early... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.