We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Photochemical Internalization Cancer Treatment with Minor Side Effects Closer to Reality

By LabMedica International staff writers
Posted on 24 Jan 2012
Side effects are currently the biggest drawback with any cancer treatment. A Norwegian biotech company is getting closer to creating a treatment that destroys only cancer cells, leaving other cells unaffected.

It is not hard to find a drug that destroys cancer cells. The problem lies in the fact that a drug’s active compounds kill indiscriminately, not only diseased cells die but also other cells in the body. This is why the side effects associated with conventional cancer treatment are frequently so severe.

The hope of any cancer researcher is to develop a drug that works only against a cancerous tumor--without adversely affecting the rest of the body. This objective can be attained in two ways: one is to produce targeted drugs that affect only the cancer cells; the other is to design smarter way of delivering a drug to its target without affecting other parts of the body.

A biotech company, PCI Biotech Holding, ASA (Lysaker, Norway), has been focusing on the latter approach since 2000. Researchers working on the project Fotokjemisk internalisering for Cellegiftterapi av Kreft (Photochemical Internalization of Chemotherapy) have steadily been getting closer to a solution. Headed by chief scientific officer Dr. Anders Høgset, the project has received funding under the Program for User-driven Research-based Innovation (BIA) at the Research Council of Norway.

The technology is based on light and is called photochemical internalization (PCI). It was discovered in 1994 at the Norwegian Radium Hospital in Oslo (now part of Oslo University Hospital). PCI Biotech uses the technology to direct a red laser to the area of the body where the drug is to have its effect. The light significantly enhances drug delivery to specific locations inside the diseased cells.

“But in order to achieve the desired effect from the light, we need to give the patient a photosensitizing compound,” explained Dr. Høgset. “This is a chemical substance increasing cells’ sensitivity to light. We have created and patented a molecule [Amphinex] that we inject into a patient and let circulate for a few days. Then we give the patient the desired drug. After a short while, we shine the laser on the tumor where both Amphinex and the medication are now present. When light is applied, Amphinex triggers processes within the cancer cells, substantially enhancing the effect of the drug.”

The challenge of effectively transporting molecules to a targeted area inside a cell has long stumped cancer researchers. For pharmaceutical companies, it has created a logjam, slowing down further development of a number of molecules with great therapeutic possibilities.

Patients have often had to receive higher doses of a drug than what would otherwise be necessary had there existed a way to target drug delivery to the right location inside a cell. Because of these higher doses, the side effects patients experience are commensurately more severe. “Now we have finally succeeded in finding a way to deliver cancer medications inside the malignant cells, destroying them effectively,” noted Dr. Høgset.

These cancer-killing medications pass through cancer cell membranes much more easily, which considerably increases their accuracy. It follows that doses can be reduced substantially with side effects becoming correspondingly less severe. “In the laboratory, we have managed to enhance the effect of some cytotoxic drugs by a full 50 times. We did so by administering Amphinex and directing light to the cancer cell,” explained Dr. Høgset.

PCI Biotech, together with University College London Hospital, began performing research on human subjects two years ago. “All patients involved in the study experienced a considerable effect from the light treatment and, in most cases, the treated tumors disappeared altogether. No serious side effects were observed,” said Dr. Høgset.

PCI Biotech is now going to follow-up with additional clinical research. Up to the present, PCI Biotech has focused on localized cancer treatment, for example, for mouth cancer, breast cancer, and facial skin cancer. Many cancer patients stand to benefit greatly from localized treatment, but a great number also require treatment that can attack cancer that has metastasized to other areas of the body.

As part of a future project, PCI Biotech intends to extend its technology to treatment of metastatic cancer. The project will evaluate whether the technology can activate a person’s immune system, enabling it to attack cancer cells in more than one part of the body.

Related Links:

PCI Biotech Holding



Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.