We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated System Developed for Human Organoid Production

By LabMedica International staff writers
Posted on 30 May 2018
An automated liquid handling system has been established for the rapid production of human organoids derived from pluripotent stem cells.

Organoids derived from human pluripotent stem cells are a potentially powerful tool for use in cellular research utilizing high-throughput screening (HTS), but the complexity of maintaining organoid cultures has posed a significant challenge for miniaturization and automation.

In order to simplify working with organoids, investigators at the University of Washington School of Medicine (Seattle, USA) developed a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. This system relied on liquid-handling robots to seed pluripotent stem cells onto 384-well microtiter plates. Each microwell eventually generated ten or more organoids. The entire 21-day protocol, from plating to differentiation to analysis, was performed automatically by liquid-handling robots.

The investigators reported in the May 17, 2018, online edition of the journal Cell Stem Cell that high-content imaging analysis revealed both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identified previously undetected parietal, interstitial, and partially differentiated compartments within organoids and defined conditions that greatly expanded the vascular endothelium.

In an extension of the protocol, the investigators produced genetically engineered organoids carrying mutations that caused polycystic kidney disease, a common, inherited condition that affects one in 600 people worldwide and often leads to kidney failure. Screening these gene-edited organoids in this system revealed an unexpected role for myosin in polycystic kidney disease.

"This is a new "secret weapon" in our fight against disease," said senior author Dr. Benjamin Freedman, assistant professor of medicine at the University of Washington School of Medicine. "Ordinarily, just setting up an experiment of this magnitude would take a researcher all day, while the robot can do it in 20 minutes. On top of that, the robot does not get tired and make mistakes. "There is no question. For repetitive, tedious tasks like this, robots do a better job than humans."

"These findings give us a better idea of the nature of these organoids and provide a baseline from which we can make improvements," said Dr. Freedman. "The value of this high-throughput platform is that we can now alter our procedure at any point, in many different ways, and quickly see which of these changes produces a better result."

Related Links:
University of Washington School of Medicine


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Centromere B Assay
Centromere B Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.