We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Oncogene Used as Drug Transporter to Block Tumor Growth

By LabMedica International staff writers
Posted on 07 Mar 2018
Print article
Image: The 123B9 dimeric peptide (right panel) has a scorpion-like shape with two arms that bind to EphA2-expressing cancer cells and a tail (brown) comprising the cytotoxic chemotherapeutic agent paclitaxel. The compound recognizes the surface of cancer cells that are rich in EphA2 (labeled in red in the left panel) and deliver the cytotoxic agent (Photo courtesy of the Pellecchia Laboratory, University of California, Riverside).
Image: The 123B9 dimeric peptide (right panel) has a scorpion-like shape with two arms that bind to EphA2-expressing cancer cells and a tail (brown) comprising the cytotoxic chemotherapeutic agent paclitaxel. The compound recognizes the surface of cancer cells that are rich in EphA2 (labeled in red in the left panel) and deliver the cytotoxic agent (Photo courtesy of the Pellecchia Laboratory, University of California, Riverside).
A potent peptide-drug conjugate that targets the EphA2 (ephrin type-A receptor 2) oncogene was shown to reduce circulating cancer cells and metastases in breast cancer models.

EphA2 overexpression has been associated with metastasis of multiple cancer types, including melanoma, ovarian, prostate, lung, and breast cancer. Investigators at the University of California, Riverside (USA) had proposed employing chemotherapeutic peptide-drug conjugates (PDCs) using EphA2-targeting agents such as the YSA peptide or its optimized version 123B9. While their studies indicated that YSA- or 123B9-drug conjugates could selectively deliver cytotoxic drugs to cancer cells in vivo, the high concentrations of the agents that were required to bind the EphA2 receptor remained a limiting factor in developing these PDC for clinical purposes.

In overcoming these limitations, the investigators reported in the February 22, 2018, online edition of the Journal of Medicinal Chemistry that they had prepared a dimeric version of 123B9 capable of inducing receptor activation at nanomolar concentrations. In addition, they demonstrated that conjugation of dimeric 123B9 with the anticancer drug paclitaxel was very effective in targeting circulating tumor cells and inhibiting lung metastasis in breast cancer models.

"Once this novel tumor-homing agent binds to the EphA2 receptor, the oncogene functions as a cancer-specific molecular Trojan horse for paclitaxel, carrying the drug inside the cancel cell, killing the cell, and thwarting metastasis," said senior author Dr. Maurizio Pellecchia, professor of biomedical sciences at the University of California, Riverside. "Without the targeting agent, paclitaxel cannot hitch a ride on EphA2. Because this binding causes EphA2 internalization, we also sought to conjugate 123B9 with paclitaxel and thus direct the drug to migrating cancer cells."

"Our work predicts that reducing the number of circulating cancer cells produces less metastasis," said Dr. Pellecchia. "Indeed, in a second tumor model of metastatic breast cancer, we demonstrated that mice treated with the EphA2-targeting paclitaxel conjugate presented nearly no lung metastases, while a large numbers of lesions were observed in both untreated mice and in mice treated with just paclitaxel. The proof-of-concept studies we have obtained thus far are extremely encouraging, and we are confident that with proper support and efforts we could translate our findings into experimental therapeutics for a variety of solid tumors that are driven by EphA2 overexpression, including breast, lung, prostate, pancreatic and ovarian cancers."

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.