We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Antibody Clears Amyloid Plaques in Mouse Model

By LabMedica International staff writers
Posted on 10 Apr 2018
Print article
Image: Antibodies against APOE (red) bind to amyloid plaques (blue) in brain tissue from people with Alzheimer\'s disease. Investigators have found that the antibody can sweep away the damaging plaques, at least in mice, which could lead to a therapy for the devastating disease (Photo courtesy of Monica Xiong, Washington University School of Medicine).
Image: Antibodies against APOE (red) bind to amyloid plaques (blue) in brain tissue from people with Alzheimer\'s disease. Investigators have found that the antibody can sweep away the damaging plaques, at least in mice, which could lead to a therapy for the devastating disease (Photo courtesy of Monica Xiong, Washington University School of Medicine).
A team of Alzheimer's disease researchers working with a mouse model identified a specific antibody capable of binding to and mediating the removal of the amyloid plaques that characterize this catastrophic neurodegenerative disorder.

The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor so far discovered for late-onset Alzheimer disease (LOAD). Previous studies have provided evidence that apoE influenced Alzheimer disease (AD) in large part by affecting amyloid beta (Abeta) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown.

To increase understanding of the role of apoE in AD, investigators at Washington University School of Medicine (St. Louis, MO, USA) examined whether anti-human apoE antibodies could decrease Abeta pathology in mice producing both human Abeta and apoE4, and investigated the mechanism underlying these effects. To do this, the investigators utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4).

The investigators reported in the March 30, 2018, online edition of the Journal of Clinical Investigation that they had discovered an anti-human apoE antibody, anti-human apoE 4 (HAE-4), that specifically recognized human apoE4 and apoE3 and preferentially bound non-lipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also bound to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice.

When delivered centrally or by peripheral injection, HAE-4 reduced Abeta deposition in APPPS1-21/APOE4 mice. Using an adeno-associated virus vector to express two different full-length anti-apoE antibodies in the brain, they found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcgamma receptor function.

These data tended to support the hypothesis that a primary mechanism for apoE-mediated plaque formation was a result of apoE aggregation, as preferentially targeting apoE aggregated with therapeutic antibodies reduced Abeta pathology and may represent a selective approach to treat AD.

“Many people build up amyloid over many years, and the brain just cannot get rid of it,” said senior author Dr. David Holtzman, professor of neurology at Washington University School of Medicine. “By removing plaques, if we start early enough, we may be able to stop the changes to the brain that result in forgetfulness, confusion, and cognitive decline.”

“It turns out that the APOE in the plaques has a different structure than the form of APOE found in the blood,” said Dr. Holtzman. “The anti-amyloid antibodies are going to be binding to most of the molecules that are in the plaque, but the anti-APOE antibody would target just a very small component of the plaque. This means we may find less immune activation, and we might not see the unwelcome side effects.”

Related Links:
Washington University School of Medicine

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.