Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Antibody Clears Amyloid Plaques in Mouse Model

By LabMedica International staff writers
Posted on 10 Apr 2018
A team of Alzheimer's disease researchers working with a mouse model identified a specific antibody capable of binding to and mediating the removal of the amyloid plaques that characterize this catastrophic neurodegenerative disorder.

The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor so far discovered for late-onset Alzheimer disease (LOAD). More...
Previous studies have provided evidence that apoE influenced Alzheimer disease (AD) in large part by affecting amyloid beta (Abeta) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown.

To increase understanding of the role of apoE in AD, investigators at Washington University School of Medicine (St. Louis, MO, USA) examined whether anti-human apoE antibodies could decrease Abeta pathology in mice producing both human Abeta and apoE4, and investigated the mechanism underlying these effects. To do this, the investigators utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4).

The investigators reported in the March 30, 2018, online edition of the Journal of Clinical Investigation that they had discovered an anti-human apoE antibody, anti-human apoE 4 (HAE-4), that specifically recognized human apoE4 and apoE3 and preferentially bound non-lipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also bound to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice.

When delivered centrally or by peripheral injection, HAE-4 reduced Abeta deposition in APPPS1-21/APOE4 mice. Using an adeno-associated virus vector to express two different full-length anti-apoE antibodies in the brain, they found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcgamma receptor function.

These data tended to support the hypothesis that a primary mechanism for apoE-mediated plaque formation was a result of apoE aggregation, as preferentially targeting apoE aggregated with therapeutic antibodies reduced Abeta pathology and may represent a selective approach to treat AD.

“Many people build up amyloid over many years, and the brain just cannot get rid of it,” said senior author Dr. David Holtzman, professor of neurology at Washington University School of Medicine. “By removing plaques, if we start early enough, we may be able to stop the changes to the brain that result in forgetfulness, confusion, and cognitive decline.”

“It turns out that the APOE in the plaques has a different structure than the form of APOE found in the blood,” said Dr. Holtzman. “The anti-amyloid antibodies are going to be binding to most of the molecules that are in the plaque, but the anti-APOE antibody would target just a very small component of the plaque. This means we may find less immune activation, and we might not see the unwelcome side effects.”

Related Links:
Washington University School of Medicine


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.