We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Minor Blood Group Antigens Deleted by Gene Editing

By LabMedica International staff writers
Posted on 12 May 2018
Print article
Image: Synthetic biologists have succeeded in generating laboratory-made red blood cells deficient in minor blood group antigens (Photo courtesy of Dr. Ashley Toye, University of Bristol).
Image: Synthetic biologists have succeeded in generating laboratory-made red blood cells deficient in minor blood group antigens (Photo courtesy of Dr. Ashley Toye, University of Bristol).
The CRISPR/Cas9 gene-editing tool was used to create a line of red blood cells for transfusion that was completely deficient in blood groups encoded by five different genes that generate antigens responsible for the most common transfusion incompatibilities.

Regular blood transfusion is the basis of care for patients with red blood cell (RBC) disorders such as thalassemia or sickle‐cell disease. However, repeated transfusions will often cause patients to develop an immune response to all but the most specifically matched donor blood due to incompatibility at the level of minor blood group antigens.

To eliminate the most common minor blood group antigens from donor blood cells, investigators at the University of Bristol (United Kingdom) used CRISPR‐mediated genome editing of an immortalized human erythroblast cell line (BEL‐A) to generate multiple competent cell lines deficient in individual blood group antigens.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

The investigators reported in the April 26, 2018, online edition of the journal EMBO Molecular Medicine that by simultaneously expressing multiple guide RNAs in these cells, they demonstrated the ability to delete multiple blood group genes in erythroblasts and presented proof‐of‐principle generation of red blood cells completely deficient in blood groups encoded by five different genes that encode antigens responsible for the most common transfusion incompatibilities: ABO (Bombay phenotype), Rh (Rh-null), Kell (K0), Duffy (Duffy-null), and GPB (S-s-U-).

Senior author Dr. Ashley Toye, reader in cell biology at the University of Bristol, said, "Blood made using genetically edited cells could one day provide compatible transfusions for a group of patients for whom blood matching is difficult or impossible to achieve within the donor population. However, much more work will still be needed to produce blood cells suitable for patient use."

Related Links:
University of Bristol

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.