We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecule-Based System Rids Cells of Unwanted RNAs

By LabMedica International staff writers
Posted on 12 Jun 2018
Print article
Image: The structure of the RNase L enzyme (Photo courtesy of Wikimedia Commons).
Image: The structure of the RNase L enzyme (Photo courtesy of Wikimedia Commons).
Researchers seeking ways to modify gene expression have developed a small-molecule-based tool that can recruit a nuclease to a specific gene transcript, triggering its destruction.

The balance between synthesis of RNA and its degradation is a key determinant in the life of a cell. Engineered systems such as the CRISPR/Cas9 gene editor have been adapted to rid a cell of RNAs.

In a new approach for manipulating the cellular RNA population, investigators at the Scripps Research Institute (Jupiter, FL, USA) attached a small molecule (Targaprimir-96), which selectively binds the oncogenic microRNA (miR)-96 hairpin precursor, to a short 2′-5′ poly(A) oligonucleotide.

The investigators reported in the May 24, 2018, online edition of the Journal of the American Chemical Society that the conjugated molecule locally activated the endogenous enzyme RNase L (latent ribonuclease), which selectively cleaved the miR-96 precursor in cancer cells in a catalytic and sub-stoichiometric fashion.

Silencing miR-96 activated the pro-apoptotic FOXO1 transcription factor, triggering apoptosis in breast cancer, but not healthy breast, cells. These results demonstrated that small molecules could be programmed to selectively cleave RNA via nuclease recruitment with broad implications for drug development.

“Since it is now known that RNA is a key driver in nearly every disease, optimization of this approach that turns a cell’s natural defenses toward destroying disease-causing RNAs is likely broadly applicable. We will be laser-focused on diseases for which there are no known cure and have a poor prognosis, such as hard-to-treat cancers and incurable human genetic disease,” said senior author Dr. Matthew D. Disney, chemistry team leader at the Scripps Research Institute. “I am excited to see where we and others ultimately take this.”

“These studies, like much science, were about a decade in the making. We are very excited to see how this initial application evolves,” said Dr. Disney. “This research further shows that RNA is indeed a viable target to make medicines. I believe this is just the tip of the iceberg of how this approach will ultimately be applied.”

Related Links:
Scripps Research Institute

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Histamine ELISA
Histamine ELISA
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.