We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Molecular Diagnostics (MDx) And Lateral Flow Assays (LAFs) Dominate COVID-19 Diagnostics, Says New Report

By LabMedica International staff writers
Posted on 30 Apr 2020
Print article
Illustration
Illustration
The need for universal and massive testing across the population has led to a race for technology innovations for COVID-19 diagnostics. From the technological perspective, molecular diagnostics (MDx) and lateral flow assays (LAFs) dominate COVID-19 diagnostics.

These are the latest findings of IDTechEx (Cambridge, UK), a global market research firm, that have been published in its new report "COVID-19 Diagnostics".

Diagnostic testing is possibly the only efficient way to know the spread of the SARS-CoV-2 in time and space, enabling policymakers and healthcare workers to track and mitigate the outbreak of COVID-19. The demand for COVID-19 testing is estimated to be over 600 million tests including 120 million genetic tests and over 500 million rapid tests.

Molecules derived from the virus—nucleic acids like RNA or DNA, or proteins—form the basis of diagnostics as well as being essential for developing new therapies and vaccines. Depending on the target biomarkers, the diagnostic methods can be separated into two categories: genetic testing (detecting the viral genome) and serological & antigenic testing (detecting antibodies and viral antigens, respectively). From the technological perspective, MDx and LAFs dominate COVID-19 diagnostics.

The gold standard used across clinical laboratories is quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR, MDx), which requires a central lab setting. Such qRT-PCR testing lasts for more than 2 hour and the sample shipment cost up to several days. With the demand for quicker tests at community settings, the market is moving into point-of-care (POC) devices, including POC MDx and POC LFAs.

Microfluidics is the key technology behind POC MDx, which controls the motion of small amounts of fluids in microchannels. Microfluidic cartridges enable the miniaturization of devices and introduce automation in the sample handling and detection processes. Some POC MDx devices use isothermal amplification of nucleic acid as an alternative to PCR devices. Isothermal amplification bypasses the need of thermal cycling and reduces the detection time to just five minutes. Various isothermal amplification methods have been adopted for COVID-19 diagnostics. However, complex design and unspecific amplification hinder the widespread use of this method.

Apart from the time consuming thermal cycling, real-time fluorescent detection is another limitation for low-cost and portable diagnosis tools. LAFs, electrochemical detection and microbead-based arrays are integrated with PCR to detect the amplified genetic products. These hybrid systems enable faster, cheaper and palm-size devices at the expense of sensitivity and specificity. More recently, CRISPR-Cas (gene-editing tool based on specific gene recognition) and DNA sequencing techniques show the potential for highly sensitive and selective hybrid systems.

Apart from the effort from biotech, multiple software companies have developed algorithms to identify signs of COVID-19-related pneumonia in patient scans. CT imaging is an effective way of detecting abnormalities indicative of COVID-19, and image recognition AI algorithms have the potential to detect these abnormalities faster and more efficiently than radiologists.

Related Links:
IDTechEx

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.