We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Clotting Linked to Immune Response

By LabMedica International staff writers
Posted on 25 Apr 2013
Print article
A link has been discovered between a protein that triggers the formation of blood clots and other proteins that are essential for the body's immune system.

Vascular endothelial cells express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF) multimers in long, string-like structures that initiate platelet adhesion during hemostasis and thrombosis.

Scientists at Rice University (Houston, TX, USA) quantified gene expression of complement components in cultured human umbilical vein endothelial cells by real-time polymerase chain reaction (PCR). They used fluorescent microscopy, monospecific antibodies against complement components, and fluorescent secondary antibodies.

Goat polyclonal antibodies to individual human complement components, purified human complement proteins, and human sera depleted of each specific complement factor were obtained from Complement Technology (Tyler, TX, USA). Monospecific reactivity of each complement antibody was verified by Western blotting.

The investigators established a biochemical link between clotting and the body's immune response involved a key clotting protein called von Willebrand factor (VWF) and about a dozen other proteins that are components of the complement system. The complement system, a part of the body's innate immune system, is one of biology's most ancient forms of defense against invading pathogens. They found that C3, an important complement pathway-initiator protein, was produced by cells in such low concentration that it was almost impossible to see, even with a fluorescent microscope, but that changed when they looked at samples that contained both C3 and VWF.

Joel Moake, MD, a hematologist and senior author of the study said, "In addition to the clinical evidence, there's also a logical basis for this connection. Clotting is a type of wound response, and wounds are magnets for infection, so there could be a selective advantage in triggering both responses at the same time. This link opens the door for studying severe, debilitating inflammatory disorders where the disease mechanism is still poorly understood, including lupus, rheumatoid arthritis, regional ileitis and ulcerative colitis, as well as age-related macular degeneration." The study was published on March 29, 2013, in the journal Public Library of Science ONE.

Related Links:

Rice University
Complement Technology



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.