We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Genomics Approach Helps to Investigate Transmission of Clostridium Difficile

By LabMedica International staff writers
Posted on 02 Jan 2013
Print article
Analysis of genomes from patients treated for Clostridium difficile infections was used to investigate how the bacteria were transmitted in hospitals.

The study, which was published on December 21, 2012, in the open access journal Genome Biology, took a genomics approach to assess the incidence of patient-to-patient transmission of C. difficile. The study was supported by the National Institute of Health Research Oxford Biomedical Research Center (Oxford, United Kingdom), a collaboration between Oxford University Hospitals NHS Trust and Oxford University.

A team of scientists sequenced the genomes of C. difficile isolated from 486 patients treated at four hospitals in Oxfordshire (United Kingdom) between 2006 and 2010. Scientists counted the number of genetic differences between different isolates and estimated the mutation rate of the bacteria. They were able to determine the likely time at which any two isolates became genetically separate and thus, whether the two patients in question could have plausibly caught the infection from each other in the hospital. In other words, genetic divergence implies a time-scale that can be used for judging the likelihood of direct transmission.

The results of the study indicated that, although transmission between patients could occur, it actually happens at relatively low frequency. In particular, concerns that healthcare teams were spreading infection between different hospitals seem to be misplaced. One exception to this general finding is that there were a large number of cases of infection from one particular strain that does appear to have been due to patient-to-patient transmission, emphasizing the epidemic nature of this lineage. Notably, this strain has declined in UK hospitals in the last five years.

Dr. Xavier Didelot, the study's lead author, said, "This research opens up very exciting opportunities for better understanding how bacterial infections are spread, and what we can do to stop them. The reduced cost of sequencing whole bacterial genomes means we now have the technology for identifying very recent transmissions of infection. Moreover, we can apply this technology even in cases when infection control teams have no suspicion that routes of contact between patients might exist."

Related Links:

National Institute of Health Research Oxford Biomedical Research Center




New
Gold Member
ANCA IFA
Kallestad Autoimmune ANCA IFA Complete Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
PoC Testing Device
QuikRead
New
Clostridium Difficile Test
VIDITEST C. Difficile Toxin A+B (Card) Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.