We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

By LabMedica International staff writers
Posted on 04 Oct 2024
Print article
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade. While exosomes from healthy cells carry important signals throughout the body, those from cancer cells can facilitate tumor spread by preparing tissues to receive tumor cells before they arrive. Exosomes carry proteins both inside and on their surfaces, and these surface proteins are often chiral, meaning they have a right- or left-handed twist, which influences how they interact with light. In cancer exosomes, these surface proteins are frequently mutated, meaning the protein's molecular structure has been altered by genetic changes. Such mutations subtly affect the protein’s shape, which in turn shifts its chirality. These alterations can be detected by analyzing how the proteins interact with circularly polarized light, which can "match" the twist of the proteins. When the twist aligns, a strong signal is returned to a light detector. However, these light signals are usually weak and difficult to interpret and detecting exosomes involves extracting them from blood samples, which is challenging because of their tiny size, ranging from just 30 to 200 nanometers.

Researchers at University of Michigan (Ann Arbor, MI, USA) have now developed a microchip capable of capturing exosomes from blood plasma to detect lung cancer. This new diagnostic method, which uses a simple blood draw, is 10 times faster and 14 times more sensitive than previous approaches, according to the research team. To identify exosomes, the team designed gold nanoparticles in the shape of twisted disks, adapted to capture exosomes within a central cavity. These cavities are tailored to perfectly match the size, shape, and surface chemistry of the exosomes, allowing for reliable capture. With a right-handed twist, the nanoparticles resonate strongly with right-twisting light but reflect little signal when exposed to left-twisting light—a phenomenon known as circular dichroism. Once the exosomes are trapped in the cavities, the proteins they carry can either amplify or diminish the return signal based on their shape.

The gold nanoparticle cavities, arranged along the tiny channels of a microfluidic chip, successfully captured exosomes from blood plasma and differentiated between samples from healthy individuals and those with lung cancer, as reported in the journal Matter. The microfluidic chips, called CDEXO chips (Circular Dichroism detection of EXOsomes), could also potentially distinguish specific lung cancer mutations, aiding doctors in tailoring treatments to target the most prevalent mutations as they evolve. The researchers envision the CDEXO chip initially being used alongside traditional diagnostic methods, with the potential to expand its use to screen for other cancers, improving early detection efforts as trust in the technology grows.

"As a next step, we want to look at most known solid tumor mutated proteins to understand how their spectral signatures are different,” said Sunitha Nagrath, U-M professor of chemical and biomedical engineering and co-corresponding author of the study. “From here, we can push the technology to further increase those spectral differences to distinguish between proteins."

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Gold Member
Hematology Analyzer
Swelab Lumi
New
CMV QC
Inactivated Cytomegalovirus High Control
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument

Print article

Channels

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.