We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

By LabMedica International staff writers
Posted on 04 Oct 2024
Print article
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade. While exosomes from healthy cells carry important signals throughout the body, those from cancer cells can facilitate tumor spread by preparing tissues to receive tumor cells before they arrive. Exosomes carry proteins both inside and on their surfaces, and these surface proteins are often chiral, meaning they have a right- or left-handed twist, which influences how they interact with light. In cancer exosomes, these surface proteins are frequently mutated, meaning the protein's molecular structure has been altered by genetic changes. Such mutations subtly affect the protein’s shape, which in turn shifts its chirality. These alterations can be detected by analyzing how the proteins interact with circularly polarized light, which can "match" the twist of the proteins. When the twist aligns, a strong signal is returned to a light detector. However, these light signals are usually weak and difficult to interpret and detecting exosomes involves extracting them from blood samples, which is challenging because of their tiny size, ranging from just 30 to 200 nanometers.

Researchers at University of Michigan (Ann Arbor, MI, USA) have now developed a microchip capable of capturing exosomes from blood plasma to detect lung cancer. This new diagnostic method, which uses a simple blood draw, is 10 times faster and 14 times more sensitive than previous approaches, according to the research team. To identify exosomes, the team designed gold nanoparticles in the shape of twisted disks, adapted to capture exosomes within a central cavity. These cavities are tailored to perfectly match the size, shape, and surface chemistry of the exosomes, allowing for reliable capture. With a right-handed twist, the nanoparticles resonate strongly with right-twisting light but reflect little signal when exposed to left-twisting light—a phenomenon known as circular dichroism. Once the exosomes are trapped in the cavities, the proteins they carry can either amplify or diminish the return signal based on their shape.

The gold nanoparticle cavities, arranged along the tiny channels of a microfluidic chip, successfully captured exosomes from blood plasma and differentiated between samples from healthy individuals and those with lung cancer, as reported in the journal Matter. The microfluidic chips, called CDEXO chips (Circular Dichroism detection of EXOsomes), could also potentially distinguish specific lung cancer mutations, aiding doctors in tailoring treatments to target the most prevalent mutations as they evolve. The researchers envision the CDEXO chip initially being used alongside traditional diagnostic methods, with the potential to expand its use to screen for other cancers, improving early detection efforts as trust in the technology grows.

"As a next step, we want to look at most known solid tumor mutated proteins to understand how their spectral signatures are different,” said Sunitha Nagrath, U-M professor of chemical and biomedical engineering and co-corresponding author of the study. “From here, we can push the technology to further increase those spectral differences to distinguish between proteins."

New
Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Cooling Table Centrifuge
MPW-352R
New
Anti-Rubella IgG (Rubella IgG) Test
Rubella IgG AccuBind ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.