We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Method Determines Whether an Unborn Baby Has Down's Disease

By LabMedica International staff writers
Posted on 16 Oct 2013
Print article
Scientists have developed a new, noninvasive blood test that can reliably detect whether or not an unborn baby has Down's syndrome. The test can be given earlier in pregnancy and is more accurate than current checks.

Current screening for Down's syndrome and other trisomy conditions includes a combined test done between the 11th and 13th weeks of pregnancy, which involves an ultrasound screen and a hormonal analysis of the pregnant woman’s blood. Methods such as chorionic villus sampling (CVS), which involves taking cell samples from the placenta, and amniocentesis (using a sample of amniotic fluid), are also used to detect abnormalities but they are both invasive and carry a risk of miscarriage.

Several studies have shown that noninvasive prenatal diagnosis for trisomy syndromes using fetal cell free (cf)DNA from a pregnant woman’s blood is highly sensitive and specific, making it a potentially reliable alternative that can be done earlier in pregnancy.

Kypros Nicolaides, professor of Fetal Medicine at King’s College London (United Kingdom) and Head of the Harris Birthright Research Center for Fetal Medicine at King’s College Hospital (London, United Kingdom), and colleagues demonstrated the feasibility of routine screening for trisomies 21, 18, and 13 by cfDNA testing. Testing done in 1,005 pregnancies at 10 weeks had a lower false positive rate and higher sensitivity for fetal trisomy than the combined test done at 12 weeks. Both cfDNA and combined testing detected all trisomies. The estimated false-positive rates were 0.1 percent and 3.4 percent, respectively.

"This study has shown that the main advantage of cfDNA testing, compared with the combined test, is the substantial reduction in false positive rate. Another major advantage of cfDNA testing is the reporting of results as very high or very low risk, which makes it easier for parents to decide in favor of or against invasive testing," said Prof. Nicolaides.

A second study by the group, which included pregnancies undergoing screening at three UK hospitals between March 2006 and May 2012, found that effective first-trimester screening for Down’s syndrome could be achieved by cfDNA testing contingent on the results of the combined test done at 11 to 13 weeks. The strategy detected 98 % of cases, and invasive testing was needed for confirmation in less than 0.5 percent of cases.

The authors conclude that screening for trisomy 21 by cfDNA testing contingent on the results of an expanded combined test would retain the advantages of the current method of screening, but with a simultaneous major increase in detection rate and decrease in the rate of invasive testing.
The results of the investigations were published online on June 7, 2013, in Ultrasound Obstetrics and Gynecology.

Related Links:
King’s College London
Harris Birthright Research Centre for Fetal Medicine at King’s College Hospital


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Human Papillomavirus Multiplex Assay
Anyplex Ⅱ HPV28 Detection
New
Lab Autoclave
T-Lab Eco

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.