We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Specific Tissues and Organs May Be Monitored by Whole Blood Transcriptome Analysis

By LabMedica International staff writers
Posted on 19 May 2014
Print article
A team of bioengineers has used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape of circulating RNA (the transcriptome) in human subjects.

By focusing on tissue-specific genes, investigators at Stanford University (Palo Alto, CA, USA) were able to identify the relative contributions of these tissues to circulating RNA and monitor changes during tissue development and neurodegenerative disease states. In a recently published study, they applied these techniques to analyze blood samples taken from two quite different patient pools: pregnant women, who were followed through all three trimesters and after delivery, and Alzheimer's disease patients and similarly aged controls.

In addition to the analysis of mRNA, they observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma.

Results obtained during this study demonstrated that it was possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it was possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample.

The investigators also evaluated the role of neuron-specific transcripts in the blood of healthy adults and those suffering from Alzheimer’s disease and showed that disease specific neural transcripts were present at increased levels in the blood of affected individuals.

"We think of this technique as a kind of molecular stethoscope," said senior author Dr. Stephen Quake, professor of bioengineering and applied physics at Stanford University, "and it is broadly useful for any tissue you care to analyze. There are many potential practical applications for this work. We could potentially use it to look for things going wrong in pregnancy, like preeclampsia or signs of preterm birth. And we hope to use it to track general health issues in various organs."

"We have moved beyond just detecting gene sequences to really analyzing and understanding patterns of gene activity," said Dr. Quake. "Knowing the DNA sequence of a gene in the blood has been shown to be useful in a few specific cases, like cancer, pregnancy, and organ transplantation. Analyzing the RNA enables a much broader perspective of what is going on in the body at any particular time."

The blood transcriptome study was published in the May 5, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

Stanford University


New
Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Dengue Test
Lab Rapid Dengue NS1
New
Lab Autoclave
T-Lab Eco

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.